Evaluate
\frac{41}{8}=5.125
Factor
\frac{41}{2 ^ {3}} = 5\frac{1}{8} = 5.125
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)5125}\\\end{array}
Use the 1^{st} digit 5 from dividend 5125
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)5125}\\\end{array}
Since 5 is less than 1000, use the next digit 1 from dividend 5125 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)5125}\\\end{array}
Use the 2^{nd} digit 1 from dividend 5125
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)5125}\\\end{array}
Since 51 is less than 1000, use the next digit 2 from dividend 5125 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)5125}\\\end{array}
Use the 3^{rd} digit 2 from dividend 5125
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)5125}\\\end{array}
Since 512 is less than 1000, use the next digit 5 from dividend 5125 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)5125}\\\end{array}
Use the 4^{th} digit 5 from dividend 5125
\begin{array}{l}\phantom{1000)}0005\phantom{8}\\1000\overline{)5125}\\\phantom{1000)}\underline{\phantom{}5000\phantom{}}\\\phantom{1000)9}125\\\end{array}
Find closest multiple of 1000 to 5125. We see that 5 \times 1000 = 5000 is the nearest. Now subtract 5000 from 5125 to get reminder 125. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }125
Since 125 is less than 1000, stop the division. The reminder is 125. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}