Evaluate
\frac{51}{14}\approx 3.642857143
Factor
\frac{3 \cdot 17}{2 \cdot 7} = 3\frac{9}{14} = 3.642857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)51}\\\end{array}
Use the 1^{st} digit 5 from dividend 51
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)51}\\\end{array}
Since 5 is less than 14, use the next digit 1 from dividend 51 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)51}\\\end{array}
Use the 2^{nd} digit 1 from dividend 51
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)51}\\\phantom{14)}\underline{\phantom{}42\phantom{}}\\\phantom{14)9}9\\\end{array}
Find closest multiple of 14 to 51. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 51 to get reminder 9. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }9
Since 9 is less than 14, stop the division. The reminder is 9. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}