Evaluate
\frac{3125}{2}=1562.5
Factor
\frac{5 ^ {5}}{2} = 1562\frac{1}{2} = 1562.5
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)50000}\\\end{array}
Use the 1^{st} digit 5 from dividend 50000
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)50000}\\\end{array}
Since 5 is less than 32, use the next digit 0 from dividend 50000 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)50000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 50000
\begin{array}{l}\phantom{32)}01\phantom{4}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}18\\\end{array}
Find closest multiple of 32 to 50. We see that 1 \times 32 = 32 is the nearest. Now subtract 32 from 50 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{32)}01\phantom{5}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}180\\\end{array}
Use the 3^{rd} digit 0 from dividend 50000
\begin{array}{l}\phantom{32)}015\phantom{6}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}180\\\phantom{32)}\underline{\phantom{}160\phantom{99}}\\\phantom{32)9}20\\\end{array}
Find closest multiple of 32 to 180. We see that 5 \times 32 = 160 is the nearest. Now subtract 160 from 180 to get reminder 20. Add 5 to quotient.
\begin{array}{l}\phantom{32)}015\phantom{7}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}180\\\phantom{32)}\underline{\phantom{}160\phantom{99}}\\\phantom{32)9}200\\\end{array}
Use the 4^{th} digit 0 from dividend 50000
\begin{array}{l}\phantom{32)}0156\phantom{8}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}180\\\phantom{32)}\underline{\phantom{}160\phantom{99}}\\\phantom{32)9}200\\\phantom{32)}\underline{\phantom{9}192\phantom{9}}\\\phantom{32)999}8\\\end{array}
Find closest multiple of 32 to 200. We see that 6 \times 32 = 192 is the nearest. Now subtract 192 from 200 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{32)}0156\phantom{9}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}180\\\phantom{32)}\underline{\phantom{}160\phantom{99}}\\\phantom{32)9}200\\\phantom{32)}\underline{\phantom{9}192\phantom{9}}\\\phantom{32)999}80\\\end{array}
Use the 5^{th} digit 0 from dividend 50000
\begin{array}{l}\phantom{32)}01562\phantom{10}\\32\overline{)50000}\\\phantom{32)}\underline{\phantom{}32\phantom{999}}\\\phantom{32)}180\\\phantom{32)}\underline{\phantom{}160\phantom{99}}\\\phantom{32)9}200\\\phantom{32)}\underline{\phantom{9}192\phantom{9}}\\\phantom{32)999}80\\\phantom{32)}\underline{\phantom{999}64\phantom{}}\\\phantom{32)999}16\\\end{array}
Find closest multiple of 32 to 80. We see that 2 \times 32 = 64 is the nearest. Now subtract 64 from 80 to get reminder 16. Add 2 to quotient.
\text{Quotient: }1562 \text{Reminder: }16
Since 16 is less than 32, stop the division. The reminder is 16. The topmost line 01562 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1562.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}