Solve for x
x=\frac{10\left(y-30\right)}{3}
y\neq 45\text{ and }y\neq 60
Solve for y
y=\frac{3\left(x+100\right)}{10}
x\neq 50\text{ and }x\neq 100
Graph
Share
Copied to clipboard
\left(60-y\right)\left(50-x\right)=\left(y-45\right)\left(x-100\right)
Multiply both sides of the equation by \left(y-60\right)\left(y-45\right), the least common multiple of 45-y,y-60.
3000-60x-50y+yx=\left(y-45\right)\left(x-100\right)
Use the distributive property to multiply 60-y by 50-x.
3000-60x-50y+yx=yx-100y-45x+4500
Use the distributive property to multiply y-45 by x-100.
3000-60x-50y+yx-yx=-100y-45x+4500
Subtract yx from both sides.
3000-60x-50y=-100y-45x+4500
Combine yx and -yx to get 0.
3000-60x-50y+45x=-100y+4500
Add 45x to both sides.
3000-15x-50y=-100y+4500
Combine -60x and 45x to get -15x.
-15x-50y=-100y+4500-3000
Subtract 3000 from both sides.
-15x-50y=-100y+1500
Subtract 3000 from 4500 to get 1500.
-15x=-100y+1500+50y
Add 50y to both sides.
-15x=-50y+1500
Combine -100y and 50y to get -50y.
-15x=1500-50y
The equation is in standard form.
\frac{-15x}{-15}=\frac{1500-50y}{-15}
Divide both sides by -15.
x=\frac{1500-50y}{-15}
Dividing by -15 undoes the multiplication by -15.
x=\frac{10y}{3}-100
Divide -50y+1500 by -15.
\left(60-y\right)\left(50-x\right)=\left(y-45\right)\left(x-100\right)
Variable y cannot be equal to any of the values 45,60 since division by zero is not defined. Multiply both sides of the equation by \left(y-60\right)\left(y-45\right), the least common multiple of 45-y,y-60.
3000-60x-50y+yx=\left(y-45\right)\left(x-100\right)
Use the distributive property to multiply 60-y by 50-x.
3000-60x-50y+yx=yx-100y-45x+4500
Use the distributive property to multiply y-45 by x-100.
3000-60x-50y+yx-yx=-100y-45x+4500
Subtract yx from both sides.
3000-60x-50y=-100y-45x+4500
Combine yx and -yx to get 0.
3000-60x-50y+100y=-45x+4500
Add 100y to both sides.
3000-60x+50y=-45x+4500
Combine -50y and 100y to get 50y.
-60x+50y=-45x+4500-3000
Subtract 3000 from both sides.
-60x+50y=-45x+1500
Subtract 3000 from 4500 to get 1500.
50y=-45x+1500+60x
Add 60x to both sides.
50y=15x+1500
Combine -45x and 60x to get 15x.
\frac{50y}{50}=\frac{15x+1500}{50}
Divide both sides by 50.
y=\frac{15x+1500}{50}
Dividing by 50 undoes the multiplication by 50.
y=\frac{3x}{10}+30
Divide 1500+15x by 50.
y=\frac{3x}{10}+30\text{, }y\neq 45\text{ and }y\neq 60
Variable y cannot be equal to any of the values 45,60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}