Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-18\right)\times 50-\left(18+x\right)\times 8=3\left(x-18\right)\left(x+18\right)
Variable x cannot be equal to any of the values -18,18 since division by zero is not defined. Multiply both sides of the equation by \left(x-18\right)\left(x+18\right), the least common multiple of x+18,18-x.
50x-900-\left(18+x\right)\times 8=3\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply x-18 by 50.
50x-900-8\left(18+x\right)=3\left(x-18\right)\left(x+18\right)
Multiply -1 and 8 to get -8.
50x-900-144-8x=3\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply -8 by 18+x.
50x-1044-8x=3\left(x-18\right)\left(x+18\right)
Subtract 144 from -900 to get -1044.
42x-1044=3\left(x-18\right)\left(x+18\right)
Combine 50x and -8x to get 42x.
42x-1044=\left(3x-54\right)\left(x+18\right)
Use the distributive property to multiply 3 by x-18.
42x-1044=3x^{2}-972
Use the distributive property to multiply 3x-54 by x+18 and combine like terms.
42x-1044-3x^{2}=-972
Subtract 3x^{2} from both sides.
42x-1044-3x^{2}+972=0
Add 972 to both sides.
42x-72-3x^{2}=0
Add -1044 and 972 to get -72.
-3x^{2}+42x-72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-42±\sqrt{42^{2}-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 42 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-42±\sqrt{1764-4\left(-3\right)\left(-72\right)}}{2\left(-3\right)}
Square 42.
x=\frac{-42±\sqrt{1764+12\left(-72\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-42±\sqrt{1764-864}}{2\left(-3\right)}
Multiply 12 times -72.
x=\frac{-42±\sqrt{900}}{2\left(-3\right)}
Add 1764 to -864.
x=\frac{-42±30}{2\left(-3\right)}
Take the square root of 900.
x=\frac{-42±30}{-6}
Multiply 2 times -3.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-42±30}{-6} when ± is plus. Add -42 to 30.
x=2
Divide -12 by -6.
x=-\frac{72}{-6}
Now solve the equation x=\frac{-42±30}{-6} when ± is minus. Subtract 30 from -42.
x=12
Divide -72 by -6.
x=2 x=12
The equation is now solved.
\left(x-18\right)\times 50-\left(18+x\right)\times 8=3\left(x-18\right)\left(x+18\right)
Variable x cannot be equal to any of the values -18,18 since division by zero is not defined. Multiply both sides of the equation by \left(x-18\right)\left(x+18\right), the least common multiple of x+18,18-x.
50x-900-\left(18+x\right)\times 8=3\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply x-18 by 50.
50x-900-8\left(18+x\right)=3\left(x-18\right)\left(x+18\right)
Multiply -1 and 8 to get -8.
50x-900-144-8x=3\left(x-18\right)\left(x+18\right)
Use the distributive property to multiply -8 by 18+x.
50x-1044-8x=3\left(x-18\right)\left(x+18\right)
Subtract 144 from -900 to get -1044.
42x-1044=3\left(x-18\right)\left(x+18\right)
Combine 50x and -8x to get 42x.
42x-1044=\left(3x-54\right)\left(x+18\right)
Use the distributive property to multiply 3 by x-18.
42x-1044=3x^{2}-972
Use the distributive property to multiply 3x-54 by x+18 and combine like terms.
42x-1044-3x^{2}=-972
Subtract 3x^{2} from both sides.
42x-3x^{2}=-972+1044
Add 1044 to both sides.
42x-3x^{2}=72
Add -972 and 1044 to get 72.
-3x^{2}+42x=72
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+42x}{-3}=\frac{72}{-3}
Divide both sides by -3.
x^{2}+\frac{42}{-3}x=\frac{72}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-14x=\frac{72}{-3}
Divide 42 by -3.
x^{2}-14x=-24
Divide 72 by -3.
x^{2}-14x+\left(-7\right)^{2}=-24+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-24+49
Square -7.
x^{2}-14x+49=25
Add -24 to 49.
\left(x-7\right)^{2}=25
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-7=5 x-7=-5
Simplify.
x=12 x=2
Add 7 to both sides of the equation.