Evaluate
\frac{25}{22}\approx 1.136363636
Factor
\frac{5 ^ {2}}{2 \cdot 11} = 1\frac{3}{22} = 1.1363636363636365
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)50}\\\end{array}
Use the 1^{st} digit 5 from dividend 50
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)50}\\\end{array}
Since 5 is less than 44, use the next digit 0 from dividend 50 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)50}\\\end{array}
Use the 2^{nd} digit 0 from dividend 50
\begin{array}{l}\phantom{44)}01\phantom{4}\\44\overline{)50}\\\phantom{44)}\underline{\phantom{}44\phantom{}}\\\phantom{44)9}6\\\end{array}
Find closest multiple of 44 to 50. We see that 1 \times 44 = 44 is the nearest. Now subtract 44 from 50 to get reminder 6. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }6
Since 6 is less than 44, stop the division. The reminder is 6. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}