Solve for x
x=12
Graph
Share
Copied to clipboard
12x\times \frac{5}{4}+12=16x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 4,x,3.
\frac{12\times 5}{4}x+12=16x
Express 12\times \frac{5}{4} as a single fraction.
\frac{60}{4}x+12=16x
Multiply 12 and 5 to get 60.
15x+12=16x
Divide 60 by 4 to get 15.
15x+12-16x=0
Subtract 16x from both sides.
-x+12=0
Combine 15x and -16x to get -x.
-x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
x=12
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}