Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5=12x\times 12x+12x\left(-15\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x.
5=12x^{2}\times 12+12x\left(-15\right)
Multiply x and x to get x^{2}.
5=144x^{2}+12x\left(-15\right)
Multiply 12 and 12 to get 144.
5=144x^{2}-180x
Multiply 12 and -15 to get -180.
144x^{2}-180x=5
Swap sides so that all variable terms are on the left hand side.
144x^{2}-180x-5=0
Subtract 5 from both sides.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 144\left(-5\right)}}{2\times 144}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 144 for a, -180 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 144\left(-5\right)}}{2\times 144}
Square -180.
x=\frac{-\left(-180\right)±\sqrt{32400-576\left(-5\right)}}{2\times 144}
Multiply -4 times 144.
x=\frac{-\left(-180\right)±\sqrt{32400+2880}}{2\times 144}
Multiply -576 times -5.
x=\frac{-\left(-180\right)±\sqrt{35280}}{2\times 144}
Add 32400 to 2880.
x=\frac{-\left(-180\right)±84\sqrt{5}}{2\times 144}
Take the square root of 35280.
x=\frac{180±84\sqrt{5}}{2\times 144}
The opposite of -180 is 180.
x=\frac{180±84\sqrt{5}}{288}
Multiply 2 times 144.
x=\frac{84\sqrt{5}+180}{288}
Now solve the equation x=\frac{180±84\sqrt{5}}{288} when ± is plus. Add 180 to 84\sqrt{5}.
x=\frac{7\sqrt{5}}{24}+\frac{5}{8}
Divide 180+84\sqrt{5} by 288.
x=\frac{180-84\sqrt{5}}{288}
Now solve the equation x=\frac{180±84\sqrt{5}}{288} when ± is minus. Subtract 84\sqrt{5} from 180.
x=-\frac{7\sqrt{5}}{24}+\frac{5}{8}
Divide 180-84\sqrt{5} by 288.
x=\frac{7\sqrt{5}}{24}+\frac{5}{8} x=-\frac{7\sqrt{5}}{24}+\frac{5}{8}
The equation is now solved.
5=12x\times 12x+12x\left(-15\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x.
5=12x^{2}\times 12+12x\left(-15\right)
Multiply x and x to get x^{2}.
5=144x^{2}+12x\left(-15\right)
Multiply 12 and 12 to get 144.
5=144x^{2}-180x
Multiply 12 and -15 to get -180.
144x^{2}-180x=5
Swap sides so that all variable terms are on the left hand side.
\frac{144x^{2}-180x}{144}=\frac{5}{144}
Divide both sides by 144.
x^{2}+\left(-\frac{180}{144}\right)x=\frac{5}{144}
Dividing by 144 undoes the multiplication by 144.
x^{2}-\frac{5}{4}x=\frac{5}{144}
Reduce the fraction \frac{-180}{144} to lowest terms by extracting and canceling out 36.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=\frac{5}{144}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{5}{144}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{245}{576}
Add \frac{5}{144} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{8}\right)^{2}=\frac{245}{576}
Factor x^{2}-\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{245}{576}}
Take the square root of both sides of the equation.
x-\frac{5}{8}=\frac{7\sqrt{5}}{24} x-\frac{5}{8}=-\frac{7\sqrt{5}}{24}
Simplify.
x=\frac{7\sqrt{5}}{24}+\frac{5}{8} x=-\frac{7\sqrt{5}}{24}+\frac{5}{8}
Add \frac{5}{8} to both sides of the equation.