Evaluate
100
Factor
2^{2}\times 5^{2}
Share
Copied to clipboard
\frac{5}{1.05^{1}}+\frac{5}{\left(1+0.05\right)^{2}}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Add 1 and 0.05 to get 1.05.
\frac{5}{1.05}+\frac{5}{\left(1+0.05\right)^{2}}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Calculate 1.05 to the power of 1 and get 1.05.
\frac{500}{105}+\frac{5}{\left(1+0.05\right)^{2}}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Expand \frac{5}{1.05} by multiplying both numerator and the denominator by 100.
\frac{100}{21}+\frac{5}{\left(1+0.05\right)^{2}}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Reduce the fraction \frac{500}{105} to lowest terms by extracting and canceling out 5.
\frac{100}{21}+\frac{5}{1.05^{2}}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Add 1 and 0.05 to get 1.05.
\frac{100}{21}+\frac{5}{1.1025}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Calculate 1.05 to the power of 2 and get 1.1025.
\frac{100}{21}+\frac{50000}{11025}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Expand \frac{5}{1.1025} by multiplying both numerator and the denominator by 10000.
\frac{100}{21}+\frac{2000}{441}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Reduce the fraction \frac{50000}{11025} to lowest terms by extracting and canceling out 25.
\frac{4100}{441}+\frac{5}{\left(1+0.05\right)^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Add \frac{100}{21} and \frac{2000}{441} to get \frac{4100}{441}.
\frac{4100}{441}+\frac{5}{1.05^{3}}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Add 1 and 0.05 to get 1.05.
\frac{4100}{441}+\frac{5}{1.157625}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Calculate 1.05 to the power of 3 and get 1.157625.
\frac{4100}{441}+\frac{5000000}{1157625}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Expand \frac{5}{1.157625} by multiplying both numerator and the denominator by 1000000.
\frac{4100}{441}+\frac{40000}{9261}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Reduce the fraction \frac{5000000}{1157625} to lowest terms by extracting and canceling out 125.
\frac{126100}{9261}+\frac{5}{\left(1+0.05\right)^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Add \frac{4100}{441} and \frac{40000}{9261} to get \frac{126100}{9261}.
\frac{126100}{9261}+\frac{5}{1.05^{4}}+\frac{100}{\left(1+0.05\right)^{4}}
Add 1 and 0.05 to get 1.05.
\frac{126100}{9261}+\frac{5}{1.21550625}+\frac{100}{\left(1+0.05\right)^{4}}
Calculate 1.05 to the power of 4 and get 1.21550625.
\frac{126100}{9261}+\frac{500000000}{121550625}+\frac{100}{\left(1+0.05\right)^{4}}
Expand \frac{5}{1.21550625} by multiplying both numerator and the denominator by 100000000.
\frac{126100}{9261}+\frac{800000}{194481}+\frac{100}{\left(1+0.05\right)^{4}}
Reduce the fraction \frac{500000000}{121550625} to lowest terms by extracting and canceling out 625.
\frac{3448100}{194481}+\frac{100}{\left(1+0.05\right)^{4}}
Add \frac{126100}{9261} and \frac{800000}{194481} to get \frac{3448100}{194481}.
\frac{3448100}{194481}+\frac{100}{1.05^{4}}
Add 1 and 0.05 to get 1.05.
\frac{3448100}{194481}+\frac{100}{1.21550625}
Calculate 1.05 to the power of 4 and get 1.21550625.
\frac{3448100}{194481}+\frac{10000000000}{121550625}
Expand \frac{100}{1.21550625} by multiplying both numerator and the denominator by 100000000.
\frac{3448100}{194481}+\frac{16000000}{194481}
Reduce the fraction \frac{10000000000}{121550625} to lowest terms by extracting and canceling out 625.
100
Add \frac{3448100}{194481} and \frac{16000000}{194481} to get 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}