Solve for x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
4x+\left(x+6\right)\left(x-3\right)=x^{2}-8x+15
Variable x cannot be equal to any of the values -6,-4 since division by zero is not defined. Multiply both sides of the equation by \left(x+4\right)\left(x+6\right), the least common multiple of x^{2}+10x+24,x+4.
4x+x^{2}+3x-18=x^{2}-8x+15
Use the distributive property to multiply x+6 by x-3 and combine like terms.
7x+x^{2}-18=x^{2}-8x+15
Combine 4x and 3x to get 7x.
7x+x^{2}-18-x^{2}=-8x+15
Subtract x^{2} from both sides.
7x-18=-8x+15
Combine x^{2} and -x^{2} to get 0.
7x-18+8x=15
Add 8x to both sides.
15x-18=15
Combine 7x and 8x to get 15x.
15x=15+18
Add 18 to both sides.
15x=33
Add 15 and 18 to get 33.
x=\frac{33}{15}
Divide both sides by 15.
x=\frac{11}{5}
Reduce the fraction \frac{33}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}