Evaluate
\frac{4b\left(3a+2b\right)}{a^{2}-b^{2}}
Expand
-\frac{4\left(3ab+2b^{2}\right)}{b^{2}-a^{2}}
Share
Copied to clipboard
\frac{\left(4a+6b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{\left(6a+4b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{4a+6b}{a+b} times \frac{a-b}{a-b}. Multiply \frac{6a+4b}{a-b} times \frac{a+b}{a+b}.
\frac{\left(4a+6b\right)\left(a-b\right)+\left(6a+4b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Since \frac{\left(4a+6b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{\left(6a+4b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{4a^{2}-4ab+6ba-6b^{2}+6a^{2}+6ba+4ba+4b^{2}}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Do the multiplications in \left(4a+6b\right)\left(a-b\right)+\left(6a+4b\right)\left(a+b\right).
\frac{10a^{2}-2b^{2}+12ab}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Combine like terms in 4a^{2}-4ab+6ba-6b^{2}+6a^{2}+6ba+4ba+4b^{2}.
\frac{10a^{2}-2b^{2}+12ab}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Factor b^{2}-a^{2}.
\frac{-\left(10a^{2}-2b^{2}+12ab\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and \left(a+b\right)\left(-a+b\right) is \left(a+b\right)\left(-a+b\right). Multiply \frac{10a^{2}-2b^{2}+12ab}{\left(a+b\right)\left(a-b\right)} times \frac{-1}{-1}.
\frac{-\left(10a^{2}-2b^{2}+12ab\right)+4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Since \frac{-\left(10a^{2}-2b^{2}+12ab\right)}{\left(a+b\right)\left(-a+b\right)} and \frac{4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{-10a^{2}+2b^{2}-12ab+4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Do the multiplications in -\left(10a^{2}-2b^{2}+12ab\right)+4a^{2}+6b^{2}.
\frac{-6a^{2}-12ab+8b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Combine like terms in -10a^{2}+2b^{2}-12ab+4a^{2}+6b^{2}.
\frac{\left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}+\frac{\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(-a+b\right) and a^{2}+b^{2} is \left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right). Multiply \frac{-6a^{2}-12ab+8b^{2}}{\left(a+b\right)\left(-a+b\right)} times \frac{a^{2}+b^{2}}{a^{2}+b^{2}}. Multiply \frac{4b^{2}-6a^{2}}{a^{2}+b^{2}} times \frac{\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}.
\frac{\left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)+\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
Since \frac{\left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} and \frac{\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} have the same denominator, add them by adding their numerators.
\frac{-6a^{4}-6a^{2}b^{2}-12a^{3}b-12ab^{3}+8b^{2}a^{2}+8b^{4}-4b^{2}a^{2}+4b^{4}+6a^{4}-6a^{2}b^{2}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
Do the multiplications in \left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)+\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right).
\frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
Combine like terms in -6a^{4}-6a^{2}b^{2}-12a^{3}b-12ab^{3}+8b^{2}a^{2}+8b^{4}-4b^{2}a^{2}+4b^{4}+6a^{4}-6a^{2}b^{2}.
\frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Factor b^{4}-a^{4}.
\frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}-20b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Since \frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} and \frac{20b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-8a^{2}b^{2}-12a^{3}b-12ab^{3}-8b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Combine like terms in -8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}-20b^{4}.
\frac{4b\left(-3a-2b\right)\left(a^{2}+b^{2}\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Factor the expressions that are not already factored in \frac{-8a^{2}b^{2}-12a^{3}b-12ab^{3}-8b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}.
\frac{4b\left(-3a-2b\right)}{\left(a+b\right)\left(-a+b\right)}
Cancel out a^{2}+b^{2} in both numerator and denominator.
\frac{4b\left(-3a-2b\right)}{-a^{2}+b^{2}}
Expand \left(a+b\right)\left(-a+b\right).
\frac{-12ba-8b^{2}}{-a^{2}+b^{2}}
Use the distributive property to multiply 4b by -3a-2b.
\frac{\left(4a+6b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{\left(6a+4b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{4a+6b}{a+b} times \frac{a-b}{a-b}. Multiply \frac{6a+4b}{a-b} times \frac{a+b}{a+b}.
\frac{\left(4a+6b\right)\left(a-b\right)+\left(6a+4b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Since \frac{\left(4a+6b\right)\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} and \frac{\left(6a+4b\right)\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{4a^{2}-4ab+6ba-6b^{2}+6a^{2}+6ba+4ba+4b^{2}}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Do the multiplications in \left(4a+6b\right)\left(a-b\right)+\left(6a+4b\right)\left(a+b\right).
\frac{10a^{2}-2b^{2}+12ab}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{b^{2}-a^{2}}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Combine like terms in 4a^{2}-4ab+6ba-6b^{2}+6a^{2}+6ba+4ba+4b^{2}.
\frac{10a^{2}-2b^{2}+12ab}{\left(a+b\right)\left(a-b\right)}+\frac{4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Factor b^{2}-a^{2}.
\frac{-\left(10a^{2}-2b^{2}+12ab\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and \left(a+b\right)\left(-a+b\right) is \left(a+b\right)\left(-a+b\right). Multiply \frac{10a^{2}-2b^{2}+12ab}{\left(a+b\right)\left(a-b\right)} times \frac{-1}{-1}.
\frac{-\left(10a^{2}-2b^{2}+12ab\right)+4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Since \frac{-\left(10a^{2}-2b^{2}+12ab\right)}{\left(a+b\right)\left(-a+b\right)} and \frac{4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{-10a^{2}+2b^{2}-12ab+4a^{2}+6b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Do the multiplications in -\left(10a^{2}-2b^{2}+12ab\right)+4a^{2}+6b^{2}.
\frac{-6a^{2}-12ab+8b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{4b^{2}-6a^{2}}{a^{2}+b^{2}}-\frac{20b^{4}}{b^{4}-a^{4}}
Combine like terms in -10a^{2}+2b^{2}-12ab+4a^{2}+6b^{2}.
\frac{\left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}+\frac{\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(-a+b\right) and a^{2}+b^{2} is \left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right). Multiply \frac{-6a^{2}-12ab+8b^{2}}{\left(a+b\right)\left(-a+b\right)} times \frac{a^{2}+b^{2}}{a^{2}+b^{2}}. Multiply \frac{4b^{2}-6a^{2}}{a^{2}+b^{2}} times \frac{\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}.
\frac{\left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)+\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
Since \frac{\left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} and \frac{\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} have the same denominator, add them by adding their numerators.
\frac{-6a^{4}-6a^{2}b^{2}-12a^{3}b-12ab^{3}+8b^{2}a^{2}+8b^{4}-4b^{2}a^{2}+4b^{4}+6a^{4}-6a^{2}b^{2}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
Do the multiplications in \left(-6a^{2}-12ab+8b^{2}\right)\left(a^{2}+b^{2}\right)+\left(4b^{2}-6a^{2}\right)\left(a+b\right)\left(-a+b\right).
\frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{b^{4}-a^{4}}
Combine like terms in -6a^{4}-6a^{2}b^{2}-12a^{3}b-12ab^{3}+8b^{2}a^{2}+8b^{4}-4b^{2}a^{2}+4b^{4}+6a^{4}-6a^{2}b^{2}.
\frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}-\frac{20b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Factor b^{4}-a^{4}.
\frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}-20b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Since \frac{-8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} and \frac{20b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-8a^{2}b^{2}-12a^{3}b-12ab^{3}-8b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Combine like terms in -8a^{2}b^{2}-12ab^{3}-12a^{3}b+12b^{4}-20b^{4}.
\frac{4b\left(-3a-2b\right)\left(a^{2}+b^{2}\right)}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}
Factor the expressions that are not already factored in \frac{-8a^{2}b^{2}-12a^{3}b-12ab^{3}-8b^{4}}{\left(a+b\right)\left(-a+b\right)\left(a^{2}+b^{2}\right)}.
\frac{4b\left(-3a-2b\right)}{\left(a+b\right)\left(-a+b\right)}
Cancel out a^{2}+b^{2} in both numerator and denominator.
\frac{4b\left(-3a-2b\right)}{-a^{2}+b^{2}}
Expand \left(a+b\right)\left(-a+b\right).
\frac{-12ba-8b^{2}}{-a^{2}+b^{2}}
Use the distributive property to multiply 4b by -3a-2b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}