Evaluate
\frac{4913}{48}\approx 102.354166667
Factor
\frac{17 ^ {3}}{2 ^ {4} \cdot 3} = 102\frac{17}{48} = 102.35416666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)4913}\\\end{array}
Use the 1^{st} digit 4 from dividend 4913
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)4913}\\\end{array}
Since 4 is less than 48, use the next digit 9 from dividend 4913 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)4913}\\\end{array}
Use the 2^{nd} digit 9 from dividend 4913
\begin{array}{l}\phantom{48)}01\phantom{4}\\48\overline{)4913}\\\phantom{48)}\underline{\phantom{}48\phantom{99}}\\\phantom{48)9}1\\\end{array}
Find closest multiple of 48 to 49. We see that 1 \times 48 = 48 is the nearest. Now subtract 48 from 49 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{48)}01\phantom{5}\\48\overline{)4913}\\\phantom{48)}\underline{\phantom{}48\phantom{99}}\\\phantom{48)9}11\\\end{array}
Use the 3^{rd} digit 1 from dividend 4913
\begin{array}{l}\phantom{48)}010\phantom{6}\\48\overline{)4913}\\\phantom{48)}\underline{\phantom{}48\phantom{99}}\\\phantom{48)9}11\\\end{array}
Since 11 is less than 48, use the next digit 3 from dividend 4913 and add 0 to the quotient
\begin{array}{l}\phantom{48)}010\phantom{7}\\48\overline{)4913}\\\phantom{48)}\underline{\phantom{}48\phantom{99}}\\\phantom{48)9}113\\\end{array}
Use the 4^{th} digit 3 from dividend 4913
\begin{array}{l}\phantom{48)}0102\phantom{8}\\48\overline{)4913}\\\phantom{48)}\underline{\phantom{}48\phantom{99}}\\\phantom{48)9}113\\\phantom{48)}\underline{\phantom{99}96\phantom{}}\\\phantom{48)99}17\\\end{array}
Find closest multiple of 48 to 113. We see that 2 \times 48 = 96 is the nearest. Now subtract 96 from 113 to get reminder 17. Add 2 to quotient.
\text{Quotient: }102 \text{Reminder: }17
Since 17 is less than 48, stop the division. The reminder is 17. The topmost line 0102 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 102.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}