Solve for x
x=-120
x=80
Graph
Share
Copied to clipboard
\left(x-20\right)\times 4800+x\left(x-20\right)\times 10=x\times 4200
Variable x cannot be equal to any of the values 0,20 since division by zero is not defined. Multiply both sides of the equation by x\left(x-20\right), the least common multiple of x,x-20.
4800x-96000+x\left(x-20\right)\times 10=x\times 4200
Use the distributive property to multiply x-20 by 4800.
4800x-96000+\left(x^{2}-20x\right)\times 10=x\times 4200
Use the distributive property to multiply x by x-20.
4800x-96000+10x^{2}-200x=x\times 4200
Use the distributive property to multiply x^{2}-20x by 10.
4600x-96000+10x^{2}=x\times 4200
Combine 4800x and -200x to get 4600x.
4600x-96000+10x^{2}-x\times 4200=0
Subtract x\times 4200 from both sides.
400x-96000+10x^{2}=0
Combine 4600x and -x\times 4200 to get 400x.
40x-9600+x^{2}=0
Divide both sides by 10.
x^{2}+40x-9600=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=40 ab=1\left(-9600\right)=-9600
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-9600. To find a and b, set up a system to be solved.
-1,9600 -2,4800 -3,3200 -4,2400 -5,1920 -6,1600 -8,1200 -10,960 -12,800 -15,640 -16,600 -20,480 -24,400 -25,384 -30,320 -32,300 -40,240 -48,200 -50,192 -60,160 -64,150 -75,128 -80,120 -96,100
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -9600.
-1+9600=9599 -2+4800=4798 -3+3200=3197 -4+2400=2396 -5+1920=1915 -6+1600=1594 -8+1200=1192 -10+960=950 -12+800=788 -15+640=625 -16+600=584 -20+480=460 -24+400=376 -25+384=359 -30+320=290 -32+300=268 -40+240=200 -48+200=152 -50+192=142 -60+160=100 -64+150=86 -75+128=53 -80+120=40 -96+100=4
Calculate the sum for each pair.
a=-80 b=120
The solution is the pair that gives sum 40.
\left(x^{2}-80x\right)+\left(120x-9600\right)
Rewrite x^{2}+40x-9600 as \left(x^{2}-80x\right)+\left(120x-9600\right).
x\left(x-80\right)+120\left(x-80\right)
Factor out x in the first and 120 in the second group.
\left(x-80\right)\left(x+120\right)
Factor out common term x-80 by using distributive property.
x=80 x=-120
To find equation solutions, solve x-80=0 and x+120=0.
\left(x-20\right)\times 4800+x\left(x-20\right)\times 10=x\times 4200
Variable x cannot be equal to any of the values 0,20 since division by zero is not defined. Multiply both sides of the equation by x\left(x-20\right), the least common multiple of x,x-20.
4800x-96000+x\left(x-20\right)\times 10=x\times 4200
Use the distributive property to multiply x-20 by 4800.
4800x-96000+\left(x^{2}-20x\right)\times 10=x\times 4200
Use the distributive property to multiply x by x-20.
4800x-96000+10x^{2}-200x=x\times 4200
Use the distributive property to multiply x^{2}-20x by 10.
4600x-96000+10x^{2}=x\times 4200
Combine 4800x and -200x to get 4600x.
4600x-96000+10x^{2}-x\times 4200=0
Subtract x\times 4200 from both sides.
400x-96000+10x^{2}=0
Combine 4600x and -x\times 4200 to get 400x.
10x^{2}+400x-96000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-400±\sqrt{400^{2}-4\times 10\left(-96000\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 400 for b, and -96000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-400±\sqrt{160000-4\times 10\left(-96000\right)}}{2\times 10}
Square 400.
x=\frac{-400±\sqrt{160000-40\left(-96000\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-400±\sqrt{160000+3840000}}{2\times 10}
Multiply -40 times -96000.
x=\frac{-400±\sqrt{4000000}}{2\times 10}
Add 160000 to 3840000.
x=\frac{-400±2000}{2\times 10}
Take the square root of 4000000.
x=\frac{-400±2000}{20}
Multiply 2 times 10.
x=\frac{1600}{20}
Now solve the equation x=\frac{-400±2000}{20} when ± is plus. Add -400 to 2000.
x=80
Divide 1600 by 20.
x=-\frac{2400}{20}
Now solve the equation x=\frac{-400±2000}{20} when ± is minus. Subtract 2000 from -400.
x=-120
Divide -2400 by 20.
x=80 x=-120
The equation is now solved.
\left(x-20\right)\times 4800+x\left(x-20\right)\times 10=x\times 4200
Variable x cannot be equal to any of the values 0,20 since division by zero is not defined. Multiply both sides of the equation by x\left(x-20\right), the least common multiple of x,x-20.
4800x-96000+x\left(x-20\right)\times 10=x\times 4200
Use the distributive property to multiply x-20 by 4800.
4800x-96000+\left(x^{2}-20x\right)\times 10=x\times 4200
Use the distributive property to multiply x by x-20.
4800x-96000+10x^{2}-200x=x\times 4200
Use the distributive property to multiply x^{2}-20x by 10.
4600x-96000+10x^{2}=x\times 4200
Combine 4800x and -200x to get 4600x.
4600x-96000+10x^{2}-x\times 4200=0
Subtract x\times 4200 from both sides.
400x-96000+10x^{2}=0
Combine 4600x and -x\times 4200 to get 400x.
400x+10x^{2}=96000
Add 96000 to both sides. Anything plus zero gives itself.
10x^{2}+400x=96000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}+400x}{10}=\frac{96000}{10}
Divide both sides by 10.
x^{2}+\frac{400}{10}x=\frac{96000}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+40x=\frac{96000}{10}
Divide 400 by 10.
x^{2}+40x=9600
Divide 96000 by 10.
x^{2}+40x+20^{2}=9600+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=9600+400
Square 20.
x^{2}+40x+400=10000
Add 9600 to 400.
\left(x+20\right)^{2}=10000
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{10000}
Take the square root of both sides of the equation.
x+20=100 x+20=-100
Simplify.
x=80 x=-120
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}