Evaluate
\sqrt{561}-\frac{4105859}{13}\approx -315811.622253743
Factor
\frac{13 \sqrt{561} - 4105859}{13} = -315811.62225374306
Share
Copied to clipboard
\frac{113}{13}+\sqrt{561}-562^{2}
Reduce the fraction \frac{452}{52} to lowest terms by extracting and canceling out 4.
\frac{113}{13}+\sqrt{561}-315844
Calculate 562 to the power of 2 and get 315844.
\frac{113}{13}+\sqrt{561}-\frac{4105972}{13}
Convert 315844 to fraction \frac{4105972}{13}.
\frac{113-4105972}{13}+\sqrt{561}
Since \frac{113}{13} and \frac{4105972}{13} have the same denominator, subtract them by subtracting their numerators.
-\frac{4105859}{13}+\sqrt{561}
Subtract 4105972 from 113 to get -4105859.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}