Solve for d
d = -\frac{1705}{27} = -63\frac{4}{27} \approx -63.148148148
Share
Copied to clipboard
449d=341\left(d-20\right)
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 341d, the least common multiple of 341,d.
449d=341d-6820
Use the distributive property to multiply 341 by d-20.
449d-341d=-6820
Subtract 341d from both sides.
108d=-6820
Combine 449d and -341d to get 108d.
d=\frac{-6820}{108}
Divide both sides by 108.
d=-\frac{1705}{27}
Reduce the fraction \frac{-6820}{108} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}