Evaluate
\frac{4458}{455}\approx 9.797802198
Factor
\frac{2 \cdot 3 \cdot 743}{5 \cdot 7 \cdot 13} = 9\frac{363}{455} = 9.797802197802199
Share
Copied to clipboard
\begin{array}{l}\phantom{455)}\phantom{1}\\455\overline{)4458}\\\end{array}
Use the 1^{st} digit 4 from dividend 4458
\begin{array}{l}\phantom{455)}0\phantom{2}\\455\overline{)4458}\\\end{array}
Since 4 is less than 455, use the next digit 4 from dividend 4458 and add 0 to the quotient
\begin{array}{l}\phantom{455)}0\phantom{3}\\455\overline{)4458}\\\end{array}
Use the 2^{nd} digit 4 from dividend 4458
\begin{array}{l}\phantom{455)}00\phantom{4}\\455\overline{)4458}\\\end{array}
Since 44 is less than 455, use the next digit 5 from dividend 4458 and add 0 to the quotient
\begin{array}{l}\phantom{455)}00\phantom{5}\\455\overline{)4458}\\\end{array}
Use the 3^{rd} digit 5 from dividend 4458
\begin{array}{l}\phantom{455)}000\phantom{6}\\455\overline{)4458}\\\end{array}
Since 445 is less than 455, use the next digit 8 from dividend 4458 and add 0 to the quotient
\begin{array}{l}\phantom{455)}000\phantom{7}\\455\overline{)4458}\\\end{array}
Use the 4^{th} digit 8 from dividend 4458
\begin{array}{l}\phantom{455)}0009\phantom{8}\\455\overline{)4458}\\\phantom{455)}\underline{\phantom{}4095\phantom{}}\\\phantom{455)9}363\\\end{array}
Find closest multiple of 455 to 4458. We see that 9 \times 455 = 4095 is the nearest. Now subtract 4095 from 4458 to get reminder 363. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }363
Since 363 is less than 455, stop the division. The reminder is 363. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}