Evaluate
\frac{491695}{25058}\approx 19.622276319
Factor
\frac{5 \cdot 29 \cdot 3391}{2 \cdot 11 \cdot 17 \cdot 67} = 19\frac{15593}{25058} = 19.62227631894006
Share
Copied to clipboard
\begin{array}{l}\phantom{225522)}\phantom{1}\\225522\overline{)4425255}\\\end{array}
Use the 1^{st} digit 4 from dividend 4425255
\begin{array}{l}\phantom{225522)}0\phantom{2}\\225522\overline{)4425255}\\\end{array}
Since 4 is less than 225522, use the next digit 4 from dividend 4425255 and add 0 to the quotient
\begin{array}{l}\phantom{225522)}0\phantom{3}\\225522\overline{)4425255}\\\end{array}
Use the 2^{nd} digit 4 from dividend 4425255
\begin{array}{l}\phantom{225522)}00\phantom{4}\\225522\overline{)4425255}\\\end{array}
Since 44 is less than 225522, use the next digit 2 from dividend 4425255 and add 0 to the quotient
\begin{array}{l}\phantom{225522)}00\phantom{5}\\225522\overline{)4425255}\\\end{array}
Use the 3^{rd} digit 2 from dividend 4425255
\begin{array}{l}\phantom{225522)}000\phantom{6}\\225522\overline{)4425255}\\\end{array}
Since 442 is less than 225522, use the next digit 5 from dividend 4425255 and add 0 to the quotient
\begin{array}{l}\phantom{225522)}000\phantom{7}\\225522\overline{)4425255}\\\end{array}
Use the 4^{th} digit 5 from dividend 4425255
\begin{array}{l}\phantom{225522)}0000\phantom{8}\\225522\overline{)4425255}\\\end{array}
Since 4425 is less than 225522, use the next digit 2 from dividend 4425255 and add 0 to the quotient
\begin{array}{l}\phantom{225522)}0000\phantom{9}\\225522\overline{)4425255}\\\end{array}
Use the 5^{th} digit 2 from dividend 4425255
\begin{array}{l}\phantom{225522)}00000\phantom{10}\\225522\overline{)4425255}\\\end{array}
Since 44252 is less than 225522, use the next digit 5 from dividend 4425255 and add 0 to the quotient
\begin{array}{l}\phantom{225522)}00000\phantom{11}\\225522\overline{)4425255}\\\end{array}
Use the 6^{th} digit 5 from dividend 4425255
\begin{array}{l}\phantom{225522)}000001\phantom{12}\\225522\overline{)4425255}\\\phantom{225522)}\underline{\phantom{}225522\phantom{9}}\\\phantom{225522)}217003\\\end{array}
Find closest multiple of 225522 to 442525. We see that 1 \times 225522 = 225522 is the nearest. Now subtract 225522 from 442525 to get reminder 217003. Add 1 to quotient.
\begin{array}{l}\phantom{225522)}000001\phantom{13}\\225522\overline{)4425255}\\\phantom{225522)}\underline{\phantom{}225522\phantom{9}}\\\phantom{225522)}2170035\\\end{array}
Use the 7^{th} digit 5 from dividend 4425255
\begin{array}{l}\phantom{225522)}0000019\phantom{14}\\225522\overline{)4425255}\\\phantom{225522)}\underline{\phantom{}225522\phantom{9}}\\\phantom{225522)}2170035\\\phantom{225522)}\underline{\phantom{}2029698\phantom{}}\\\phantom{225522)9}140337\\\end{array}
Find closest multiple of 225522 to 2170035. We see that 9 \times 225522 = 2029698 is the nearest. Now subtract 2029698 from 2170035 to get reminder 140337. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }140337
Since 140337 is less than 225522, stop the division. The reminder is 140337. The topmost line 0000019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}