Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{44-\sqrt{2017}}{44-12\sqrt{14}}
Factor 2016=12^{2}\times 14. Rewrite the square root of the product \sqrt{12^{2}\times 14} as the product of square roots \sqrt{12^{2}}\sqrt{14}. Take the square root of 12^{2}.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{\left(44-12\sqrt{14}\right)\left(44+12\sqrt{14}\right)}
Rationalize the denominator of \frac{44-\sqrt{2017}}{44-12\sqrt{14}} by multiplying numerator and denominator by 44+12\sqrt{14}.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{44^{2}-\left(-12\sqrt{14}\right)^{2}}
Consider \left(44-12\sqrt{14}\right)\left(44+12\sqrt{14}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{1936-\left(-12\sqrt{14}\right)^{2}}
Calculate 44 to the power of 2 and get 1936.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{1936-\left(-12\right)^{2}\left(\sqrt{14}\right)^{2}}
Expand \left(-12\sqrt{14}\right)^{2}.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{1936-144\left(\sqrt{14}\right)^{2}}
Calculate -12 to the power of 2 and get 144.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{1936-144\times 14}
The square of \sqrt{14} is 14.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{1936-2016}
Multiply 144 and 14 to get 2016.
\frac{\left(44-\sqrt{2017}\right)\left(44+12\sqrt{14}\right)}{-80}
Subtract 2016 from 1936 to get -80.
\frac{1936+528\sqrt{14}-44\sqrt{2017}-12\sqrt{2017}\sqrt{14}}{-80}
Apply the distributive property by multiplying each term of 44-\sqrt{2017} by each term of 44+12\sqrt{14}.
\frac{1936+528\sqrt{14}-44\sqrt{2017}-12\sqrt{28238}}{-80}
To multiply \sqrt{2017} and \sqrt{14}, multiply the numbers under the square root.