Evaluate
\frac{407}{15}\approx 27.133333333
Factor
\frac{11 \cdot 37}{3 \cdot 5} = 27\frac{2}{15} = 27.133333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)407}\\\end{array}
Use the 1^{st} digit 4 from dividend 407
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)407}\\\end{array}
Since 4 is less than 15, use the next digit 0 from dividend 407 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)407}\\\end{array}
Use the 2^{nd} digit 0 from dividend 407
\begin{array}{l}\phantom{15)}02\phantom{4}\\15\overline{)407}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}10\\\end{array}
Find closest multiple of 15 to 40. We see that 2 \times 15 = 30 is the nearest. Now subtract 30 from 40 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{15)}02\phantom{5}\\15\overline{)407}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}107\\\end{array}
Use the 3^{rd} digit 7 from dividend 407
\begin{array}{l}\phantom{15)}027\phantom{6}\\15\overline{)407}\\\phantom{15)}\underline{\phantom{}30\phantom{9}}\\\phantom{15)}107\\\phantom{15)}\underline{\phantom{}105\phantom{}}\\\phantom{15)99}2\\\end{array}
Find closest multiple of 15 to 107. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 107 to get reminder 2. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }2
Since 2 is less than 15, stop the division. The reminder is 2. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}