\frac{ 40.28 \% +40.25 \% +40.17 \% +40.20 \% +40.24 \% }{ 5 }
Evaluate
0.40228
Factor
\frac{89 \cdot 113}{2 ^ {3} \cdot 5 ^ {5}} = 0.40228
Share
Copied to clipboard
\frac{\frac{4028}{10000}+\frac{40.25}{100}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Expand \frac{40.28}{100} by multiplying both numerator and the denominator by 100.
\frac{\frac{1007}{2500}+\frac{40.25}{100}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Reduce the fraction \frac{4028}{10000} to lowest terms by extracting and canceling out 4.
\frac{\frac{1007}{2500}+\frac{4025}{10000}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Expand \frac{40.25}{100} by multiplying both numerator and the denominator by 100.
\frac{\frac{1007}{2500}+\frac{161}{400}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Reduce the fraction \frac{4025}{10000} to lowest terms by extracting and canceling out 25.
\frac{\frac{4028}{10000}+\frac{4025}{10000}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Least common multiple of 2500 and 400 is 10000. Convert \frac{1007}{2500} and \frac{161}{400} to fractions with denominator 10000.
\frac{\frac{4028+4025}{10000}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Since \frac{4028}{10000} and \frac{4025}{10000} have the same denominator, add them by adding their numerators.
\frac{\frac{8053}{10000}+\frac{40.17}{100}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Add 4028 and 4025 to get 8053.
\frac{\frac{8053}{10000}+\frac{4017}{10000}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Expand \frac{40.17}{100} by multiplying both numerator and the denominator by 100.
\frac{\frac{8053+4017}{10000}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Since \frac{8053}{10000} and \frac{4017}{10000} have the same denominator, add them by adding their numerators.
\frac{\frac{12070}{10000}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Add 8053 and 4017 to get 12070.
\frac{\frac{1207}{1000}+\frac{40.2}{100}+\frac{40.24}{100}}{5}
Reduce the fraction \frac{12070}{10000} to lowest terms by extracting and canceling out 10.
\frac{\frac{1207}{1000}+\frac{402}{1000}+\frac{40.24}{100}}{5}
Expand \frac{40.2}{100} by multiplying both numerator and the denominator by 10.
\frac{\frac{1207+402}{1000}+\frac{40.24}{100}}{5}
Since \frac{1207}{1000} and \frac{402}{1000} have the same denominator, add them by adding their numerators.
\frac{\frac{1609}{1000}+\frac{40.24}{100}}{5}
Add 1207 and 402 to get 1609.
\frac{\frac{1609}{1000}+\frac{4024}{10000}}{5}
Expand \frac{40.24}{100} by multiplying both numerator and the denominator by 100.
\frac{\frac{1609}{1000}+\frac{503}{1250}}{5}
Reduce the fraction \frac{4024}{10000} to lowest terms by extracting and canceling out 8.
\frac{\frac{8045}{5000}+\frac{2012}{5000}}{5}
Least common multiple of 1000 and 1250 is 5000. Convert \frac{1609}{1000} and \frac{503}{1250} to fractions with denominator 5000.
\frac{\frac{8045+2012}{5000}}{5}
Since \frac{8045}{5000} and \frac{2012}{5000} have the same denominator, add them by adding their numerators.
\frac{\frac{10057}{5000}}{5}
Add 8045 and 2012 to get 10057.
\frac{10057}{5000\times 5}
Express \frac{\frac{10057}{5000}}{5} as a single fraction.
\frac{10057}{25000}
Multiply 5000 and 5 to get 25000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}