Solve for x
x = \frac{185}{6} = 30\frac{5}{6} \approx 30.833333333
Graph
Share
Copied to clipboard
\left(35-x\right)\left(4-5\right)=\left(x-30\right)\left(5-10\right)
Variable x cannot be equal to any of the values 30,35 since division by zero is not defined. Multiply both sides of the equation by \left(x-35\right)\left(x-30\right), the least common multiple of 30-x,x-35.
\left(35-x\right)\left(-1\right)=\left(x-30\right)\left(5-10\right)
Subtract 5 from 4 to get -1.
-35+x=\left(x-30\right)\left(5-10\right)
Use the distributive property to multiply 35-x by -1.
-35+x=\left(x-30\right)\left(-5\right)
Subtract 10 from 5 to get -5.
-35+x=-5x+150
Use the distributive property to multiply x-30 by -5.
-35+x+5x=150
Add 5x to both sides.
-35+6x=150
Combine x and 5x to get 6x.
6x=150+35
Add 35 to both sides.
6x=185
Add 150 and 35 to get 185.
x=\frac{185}{6}
Divide both sides by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}