Evaluate
\frac{16-5175x-3596x^{2}-913x^{3}-100x^{4}-4x^{5}}{x\left(x+8\right)\left(2x+9\right)}
Expand
\frac{16-5175x-3596x^{2}-913x^{3}-100x^{4}-4x^{5}}{x\left(2x^{2}+25x+72\right)}
Graph
Share
Copied to clipboard
\frac{4x^{2}+9x+16}{x\left(x+8\right)\left(2x+9\right)}-2x^{2}-25x-72
Factor \left(2x^{2}+25x+72\right)x.
\frac{4x^{2}+9x+16}{x\left(x+8\right)\left(2x+9\right)}+\frac{\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x^{2}-25x-72 times \frac{x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)}.
\frac{4x^{2}+9x+16+\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)}
Since \frac{4x^{2}+9x+16}{x\left(x+8\right)\left(2x+9\right)} and \frac{\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+9x+16-4x^{5}-50x^{4}-144x^{3}-50x^{4}-625x^{3}-1800x^{2}-144x^{3}-1800x^{2}-5184x}{x\left(x+8\right)\left(2x+9\right)}
Do the multiplications in 4x^{2}+9x+16+\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right).
\frac{-3596x^{2}-5175x+16-4x^{5}-100x^{4}-913x^{3}}{x\left(x+8\right)\left(2x+9\right)}
Combine like terms in 4x^{2}+9x+16-4x^{5}-50x^{4}-144x^{3}-50x^{4}-625x^{3}-1800x^{2}-144x^{3}-1800x^{2}-5184x.
\frac{-3596x^{2}-5175x+16-4x^{5}-100x^{4}-913x^{3}}{2x^{3}+25x^{2}+72x}
Expand x\left(x+8\right)\left(2x+9\right).
\frac{4x^{2}+9x+16}{x\left(x+8\right)\left(2x+9\right)}-2x^{2}-25x-72
Factor \left(2x^{2}+25x+72\right)x.
\frac{4x^{2}+9x+16}{x\left(x+8\right)\left(2x+9\right)}+\frac{\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x^{2}-25x-72 times \frac{x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)}.
\frac{4x^{2}+9x+16+\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)}
Since \frac{4x^{2}+9x+16}{x\left(x+8\right)\left(2x+9\right)} and \frac{\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right)}{x\left(x+8\right)\left(2x+9\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+9x+16-4x^{5}-50x^{4}-144x^{3}-50x^{4}-625x^{3}-1800x^{2}-144x^{3}-1800x^{2}-5184x}{x\left(x+8\right)\left(2x+9\right)}
Do the multiplications in 4x^{2}+9x+16+\left(-2x^{2}-25x-72\right)x\left(x+8\right)\left(2x+9\right).
\frac{-3596x^{2}-5175x+16-4x^{5}-100x^{4}-913x^{3}}{x\left(x+8\right)\left(2x+9\right)}
Combine like terms in 4x^{2}+9x+16-4x^{5}-50x^{4}-144x^{3}-50x^{4}-625x^{3}-1800x^{2}-144x^{3}-1800x^{2}-5184x.
\frac{-3596x^{2}-5175x+16-4x^{5}-100x^{4}-913x^{3}}{2x^{3}+25x^{2}+72x}
Expand x\left(x+8\right)\left(2x+9\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}