Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
\frac{4\times 3\sqrt{3}-2\sqrt{12}+7\sqrt{48}}{2\sqrt{12}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{12\sqrt{3}-2\sqrt{12}+7\sqrt{48}}{2\sqrt{12}}
Multiply 4 and 3 to get 12.
\frac{12\sqrt{3}-2\times 2\sqrt{3}+7\sqrt{48}}{2\sqrt{12}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{12\sqrt{3}-4\sqrt{3}+7\sqrt{48}}{2\sqrt{12}}
Multiply -2 and 2 to get -4.
\frac{8\sqrt{3}+7\sqrt{48}}{2\sqrt{12}}
Combine 12\sqrt{3} and -4\sqrt{3} to get 8\sqrt{3}.
\frac{8\sqrt{3}+7\times 4\sqrt{3}}{2\sqrt{12}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{8\sqrt{3}+28\sqrt{3}}{2\sqrt{12}}
Multiply 7 and 4 to get 28.
\frac{36\sqrt{3}}{2\sqrt{12}}
Combine 8\sqrt{3} and 28\sqrt{3} to get 36\sqrt{3}.
\frac{36\sqrt{3}}{2\times 2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{36\sqrt{3}}{4\sqrt{3}}
Multiply 2 and 2 to get 4.
9
Cancel out 4\sqrt{3} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}