Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(50+\left(4-1\right)\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply both sides of the equation by 2.
4\left(50+3\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Subtract 1 from 4 to get 3.
4\left(50+15\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 3 and 5 to get 15.
4\times 65+94=y\left(80+\left(y-1\right)\times 5\right)+74
Add 50 and 15 to get 65.
260+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 4 and 65 to get 260.
354=y\left(80+\left(y-1\right)\times 5\right)+74
Add 260 and 94 to get 354.
354=y\left(80+5y-5\right)+74
Use the distributive property to multiply y-1 by 5.
354=y\left(75+5y\right)+74
Subtract 5 from 80 to get 75.
354=75y+5y^{2}+74
Use the distributive property to multiply y by 75+5y.
75y+5y^{2}+74=354
Swap sides so that all variable terms are on the left hand side.
75y+5y^{2}+74-354=0
Subtract 354 from both sides.
75y+5y^{2}-280=0
Subtract 354 from 74 to get -280.
5y^{2}+75y-280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-75±\sqrt{75^{2}-4\times 5\left(-280\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 75 for b, and -280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-75±\sqrt{5625-4\times 5\left(-280\right)}}{2\times 5}
Square 75.
y=\frac{-75±\sqrt{5625-20\left(-280\right)}}{2\times 5}
Multiply -4 times 5.
y=\frac{-75±\sqrt{5625+5600}}{2\times 5}
Multiply -20 times -280.
y=\frac{-75±\sqrt{11225}}{2\times 5}
Add 5625 to 5600.
y=\frac{-75±5\sqrt{449}}{2\times 5}
Take the square root of 11225.
y=\frac{-75±5\sqrt{449}}{10}
Multiply 2 times 5.
y=\frac{5\sqrt{449}-75}{10}
Now solve the equation y=\frac{-75±5\sqrt{449}}{10} when ± is plus. Add -75 to 5\sqrt{449}.
y=\frac{\sqrt{449}-15}{2}
Divide -75+5\sqrt{449} by 10.
y=\frac{-5\sqrt{449}-75}{10}
Now solve the equation y=\frac{-75±5\sqrt{449}}{10} when ± is minus. Subtract 5\sqrt{449} from -75.
y=\frac{-\sqrt{449}-15}{2}
Divide -75-5\sqrt{449} by 10.
y=\frac{\sqrt{449}-15}{2} y=\frac{-\sqrt{449}-15}{2}
The equation is now solved.
4\left(50+\left(4-1\right)\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply both sides of the equation by 2.
4\left(50+3\times 5\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Subtract 1 from 4 to get 3.
4\left(50+15\right)+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 3 and 5 to get 15.
4\times 65+94=y\left(80+\left(y-1\right)\times 5\right)+74
Add 50 and 15 to get 65.
260+94=y\left(80+\left(y-1\right)\times 5\right)+74
Multiply 4 and 65 to get 260.
354=y\left(80+\left(y-1\right)\times 5\right)+74
Add 260 and 94 to get 354.
354=y\left(80+5y-5\right)+74
Use the distributive property to multiply y-1 by 5.
354=y\left(75+5y\right)+74
Subtract 5 from 80 to get 75.
354=75y+5y^{2}+74
Use the distributive property to multiply y by 75+5y.
75y+5y^{2}+74=354
Swap sides so that all variable terms are on the left hand side.
75y+5y^{2}=354-74
Subtract 74 from both sides.
75y+5y^{2}=280
Subtract 74 from 354 to get 280.
5y^{2}+75y=280
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5y^{2}+75y}{5}=\frac{280}{5}
Divide both sides by 5.
y^{2}+\frac{75}{5}y=\frac{280}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}+15y=\frac{280}{5}
Divide 75 by 5.
y^{2}+15y=56
Divide 280 by 5.
y^{2}+15y+\left(\frac{15}{2}\right)^{2}=56+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+15y+\frac{225}{4}=56+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+15y+\frac{225}{4}=\frac{449}{4}
Add 56 to \frac{225}{4}.
\left(y+\frac{15}{2}\right)^{2}=\frac{449}{4}
Factor y^{2}+15y+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{15}{2}\right)^{2}}=\sqrt{\frac{449}{4}}
Take the square root of both sides of the equation.
y+\frac{15}{2}=\frac{\sqrt{449}}{2} y+\frac{15}{2}=-\frac{\sqrt{449}}{2}
Simplify.
y=\frac{\sqrt{449}-15}{2} y=\frac{-\sqrt{449}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.