Evaluate
\frac{18}{7}\approx 2.571428571
Factor
\frac{2 \cdot 3 ^ {2}}{7} = 2\frac{4}{7} = 2.5714285714285716
Share
Copied to clipboard
\frac{\frac{28+1}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Multiply 4 and 7 to get 28.
\frac{\frac{29}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Add 28 and 1 to get 29.
\frac{\frac{29}{7}-\frac{28+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Multiply 2 and 14 to get 28.
\frac{\frac{29}{7}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Add 28 and 1 to get 29.
\frac{\frac{58}{14}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Least common multiple of 7 and 14 is 14. Convert \frac{29}{7} and \frac{29}{14} to fractions with denominator 14.
\frac{\frac{58-29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Since \frac{58}{14} and \frac{29}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Subtract 29 from 58 to get 29.
\frac{\frac{29}{14}+\frac{6+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Multiply 3 and 2 to get 6.
\frac{\frac{29}{14}+\frac{7}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Add 6 and 1 to get 7.
\frac{\frac{29}{14}+\frac{49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Least common multiple of 14 and 2 is 14. Convert \frac{29}{14} and \frac{7}{2} to fractions with denominator 14.
\frac{\frac{29+49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Since \frac{29}{14} and \frac{49}{14} have the same denominator, add them by adding their numerators.
\frac{\frac{78}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Add 29 and 49 to get 78.
\frac{\frac{39}{7}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Reduce the fraction \frac{78}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{39}{7}}{\frac{18+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Multiply 6 and 3 to get 18.
\frac{\frac{39}{7}}{\frac{20}{3}+\frac{5\times 9+5}{9}-\frac{10\times 18+1}{18}}
Add 18 and 2 to get 20.
\frac{\frac{39}{7}}{\frac{20}{3}+\frac{45+5}{9}-\frac{10\times 18+1}{18}}
Multiply 5 and 9 to get 45.
\frac{\frac{39}{7}}{\frac{20}{3}+\frac{50}{9}-\frac{10\times 18+1}{18}}
Add 45 and 5 to get 50.
\frac{\frac{39}{7}}{\frac{60}{9}+\frac{50}{9}-\frac{10\times 18+1}{18}}
Least common multiple of 3 and 9 is 9. Convert \frac{20}{3} and \frac{50}{9} to fractions with denominator 9.
\frac{\frac{39}{7}}{\frac{60+50}{9}-\frac{10\times 18+1}{18}}
Since \frac{60}{9} and \frac{50}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{39}{7}}{\frac{110}{9}-\frac{10\times 18+1}{18}}
Add 60 and 50 to get 110.
\frac{\frac{39}{7}}{\frac{110}{9}-\frac{180+1}{18}}
Multiply 10 and 18 to get 180.
\frac{\frac{39}{7}}{\frac{110}{9}-\frac{181}{18}}
Add 180 and 1 to get 181.
\frac{\frac{39}{7}}{\frac{220}{18}-\frac{181}{18}}
Least common multiple of 9 and 18 is 18. Convert \frac{110}{9} and \frac{181}{18} to fractions with denominator 18.
\frac{\frac{39}{7}}{\frac{220-181}{18}}
Since \frac{220}{18} and \frac{181}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{39}{7}}{\frac{39}{18}}
Subtract 181 from 220 to get 39.
\frac{\frac{39}{7}}{\frac{13}{6}}
Reduce the fraction \frac{39}{18} to lowest terms by extracting and canceling out 3.
\frac{39}{7}\times \frac{6}{13}
Divide \frac{39}{7} by \frac{13}{6} by multiplying \frac{39}{7} by the reciprocal of \frac{13}{6}.
\frac{39\times 6}{7\times 13}
Multiply \frac{39}{7} times \frac{6}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{234}{91}
Do the multiplications in the fraction \frac{39\times 6}{7\times 13}.
\frac{18}{7}
Reduce the fraction \frac{234}{91} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}