Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{5\times 2}=\left(3x\right)^{2}
Express \frac{\frac{4}{5}}{2} as a single fraction.
\frac{4}{10}=\left(3x\right)^{2}
Multiply 5 and 2 to get 10.
\frac{2}{5}=\left(3x\right)^{2}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{2}{5}=3^{2}x^{2}
Expand \left(3x\right)^{2}.
\frac{2}{5}=9x^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}=\frac{2}{5}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{\frac{2}{5}}{9}
Divide both sides by 9.
x^{2}=\frac{2}{5\times 9}
Express \frac{\frac{2}{5}}{9} as a single fraction.
x^{2}=\frac{2}{45}
Multiply 5 and 9 to get 45.
x=\frac{\sqrt{10}}{15} x=-\frac{\sqrt{10}}{15}
Take the square root of both sides of the equation.
\frac{4}{5\times 2}=\left(3x\right)^{2}
Express \frac{\frac{4}{5}}{2} as a single fraction.
\frac{4}{10}=\left(3x\right)^{2}
Multiply 5 and 2 to get 10.
\frac{2}{5}=\left(3x\right)^{2}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{2}{5}=3^{2}x^{2}
Expand \left(3x\right)^{2}.
\frac{2}{5}=9x^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}=\frac{2}{5}
Swap sides so that all variable terms are on the left hand side.
9x^{2}-\frac{2}{5}=0
Subtract \frac{2}{5} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-\frac{2}{5}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -\frac{2}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-\frac{2}{5}\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-\frac{2}{5}\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{\frac{72}{5}}}{2\times 9}
Multiply -36 times -\frac{2}{5}.
x=\frac{0±\frac{6\sqrt{10}}{5}}{2\times 9}
Take the square root of \frac{72}{5}.
x=\frac{0±\frac{6\sqrt{10}}{5}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{10}}{15}
Now solve the equation x=\frac{0±\frac{6\sqrt{10}}{5}}{18} when ± is plus.
x=-\frac{\sqrt{10}}{15}
Now solve the equation x=\frac{0±\frac{6\sqrt{10}}{5}}{18} when ± is minus.
x=\frac{\sqrt{10}}{15} x=-\frac{\sqrt{10}}{15}
The equation is now solved.