Solve for x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
Graph
Share
Copied to clipboard
\left(x+1\right)\times 4+\left(x-1\right)\times 2=35
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1,x^{2}-1.
4x+4+\left(x-1\right)\times 2=35
Use the distributive property to multiply x+1 by 4.
4x+4+2x-2=35
Use the distributive property to multiply x-1 by 2.
6x+4-2=35
Combine 4x and 2x to get 6x.
6x+2=35
Subtract 2 from 4 to get 2.
6x=35-2
Subtract 2 from both sides.
6x=33
Subtract 2 from 35 to get 33.
x=\frac{33}{6}
Divide both sides by 6.
x=\frac{11}{2}
Reduce the fraction \frac{33}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}