Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{9}x^{6}-\frac{4}{3}x^{3}+\frac{3}{4}=0
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{9}t^{2}-\frac{4}{3}t+\frac{3}{4}=0
Substitute t for x^{3}.
t=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times \frac{3}{4}}}{\frac{4}{9}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{4}{9} for a, -\frac{4}{3} for b, and \frac{3}{4} for c in the quadratic formula.
t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}}
Do the calculations.
t=\frac{9}{4} t=\frac{3}{4}
Solve the equation t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}} when ± is plus and when ± is minus.
x=-\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{4} x=\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}ie^{\frac{\pi i}{6}}}{4} x=\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}}{4} x=-\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}ie^{\frac{\pi i}{6}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}}{4}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
\frac{4}{9}x^{6}-\frac{4}{3}x^{3}+\frac{3}{4}=0
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{9}t^{2}-\frac{4}{3}t+\frac{3}{4}=0
Substitute t for x^{3}.
t=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times \frac{3}{4}}}{\frac{4}{9}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{4}{9} for a, -\frac{4}{3} for b, and \frac{3}{4} for c in the quadratic formula.
t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}}
Do the calculations.
t=\frac{9}{4} t=\frac{3}{4}
Solve the equation t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}} when ± is plus and when ± is minus.
x=\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}}{4}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.