Solve for x (complex solution)
x\in \frac{\sqrt[3]{2}\times 3^{\frac{2}{3}}}{2},\frac{\sqrt[3]{2}\times 3^{\frac{2}{3}}e^{\frac{4\pi i}{3}}}{2},\frac{\sqrt[3]{2}\times 3^{\frac{2}{3}}e^{\frac{2\pi i}{3}}}{2},\frac{\sqrt[3]{6}e^{\frac{4\pi i}{3}}}{2},\frac{\sqrt[3]{6}}{2},\frac{\sqrt[3]{6}e^{\frac{2\pi i}{3}}}{2}
Solve for x
x=\frac{\sqrt[3]{6}}{2}\approx 0.908560296
x = \frac{\sqrt[3]{2} \cdot 3 ^ {\frac{2}{3}}}{2} \approx 1.310370697
Graph
Share
Copied to clipboard
\frac{4}{9}x^{6}-\frac{4}{3}x^{3}+\frac{3}{4}=0
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{9}t^{2}-\frac{4}{3}t+\frac{3}{4}=0
Substitute t for x^{3}.
t=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times \frac{3}{4}}}{\frac{4}{9}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{4}{9} for a, -\frac{4}{3} for b, and \frac{3}{4} for c in the quadratic formula.
t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}}
Do the calculations.
t=\frac{9}{4} t=\frac{3}{4}
Solve the equation t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}} when ± is plus and when ± is minus.
x=-\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{4} x=\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}ie^{\frac{\pi i}{6}}}{4} x=\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}}{4} x=-\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}ie^{\frac{\pi i}{6}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}}{4}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
\frac{4}{9}x^{6}-\frac{4}{3}x^{3}+\frac{3}{4}=0
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{9}t^{2}-\frac{4}{3}t+\frac{3}{4}=0
Substitute t for x^{3}.
t=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times \frac{3}{4}}}{\frac{4}{9}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{4}{9} for a, -\frac{4}{3} for b, and \frac{3}{4} for c in the quadratic formula.
t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}}
Do the calculations.
t=\frac{9}{4} t=\frac{3}{4}
Solve the equation t=\frac{\frac{4}{3}±\frac{2}{3}}{\frac{8}{9}} when ± is plus and when ± is minus.
x=\frac{\sqrt[3]{9}\times 4^{\frac{2}{3}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}}{4}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}