Solve for x
x=\frac{2\sqrt{57}}{21}+\frac{4}{7}\approx 1.290460422
x=-\frac{2\sqrt{57}}{21}+\frac{4}{7}\approx -0.14760328
Graph
Share
Copied to clipboard
4=3x\left(7x-8\right)
Variable x cannot be equal to \frac{8}{7} since division by zero is not defined. Multiply both sides of the equation by 7x-8.
4=21x^{2}-24x
Use the distributive property to multiply 3x by 7x-8.
21x^{2}-24x=4
Swap sides so that all variable terms are on the left hand side.
21x^{2}-24x-4=0
Subtract 4 from both sides.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 21\left(-4\right)}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -24 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 21\left(-4\right)}}{2\times 21}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-84\left(-4\right)}}{2\times 21}
Multiply -4 times 21.
x=\frac{-\left(-24\right)±\sqrt{576+336}}{2\times 21}
Multiply -84 times -4.
x=\frac{-\left(-24\right)±\sqrt{912}}{2\times 21}
Add 576 to 336.
x=\frac{-\left(-24\right)±4\sqrt{57}}{2\times 21}
Take the square root of 912.
x=\frac{24±4\sqrt{57}}{2\times 21}
The opposite of -24 is 24.
x=\frac{24±4\sqrt{57}}{42}
Multiply 2 times 21.
x=\frac{4\sqrt{57}+24}{42}
Now solve the equation x=\frac{24±4\sqrt{57}}{42} when ± is plus. Add 24 to 4\sqrt{57}.
x=\frac{2\sqrt{57}}{21}+\frac{4}{7}
Divide 24+4\sqrt{57} by 42.
x=\frac{24-4\sqrt{57}}{42}
Now solve the equation x=\frac{24±4\sqrt{57}}{42} when ± is minus. Subtract 4\sqrt{57} from 24.
x=-\frac{2\sqrt{57}}{21}+\frac{4}{7}
Divide 24-4\sqrt{57} by 42.
x=\frac{2\sqrt{57}}{21}+\frac{4}{7} x=-\frac{2\sqrt{57}}{21}+\frac{4}{7}
The equation is now solved.
4=3x\left(7x-8\right)
Variable x cannot be equal to \frac{8}{7} since division by zero is not defined. Multiply both sides of the equation by 7x-8.
4=21x^{2}-24x
Use the distributive property to multiply 3x by 7x-8.
21x^{2}-24x=4
Swap sides so that all variable terms are on the left hand side.
\frac{21x^{2}-24x}{21}=\frac{4}{21}
Divide both sides by 21.
x^{2}+\left(-\frac{24}{21}\right)x=\frac{4}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{8}{7}x=\frac{4}{21}
Reduce the fraction \frac{-24}{21} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{7}x+\left(-\frac{4}{7}\right)^{2}=\frac{4}{21}+\left(-\frac{4}{7}\right)^{2}
Divide -\frac{8}{7}, the coefficient of the x term, by 2 to get -\frac{4}{7}. Then add the square of -\frac{4}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{4}{21}+\frac{16}{49}
Square -\frac{4}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{76}{147}
Add \frac{4}{21} to \frac{16}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{7}\right)^{2}=\frac{76}{147}
Factor x^{2}-\frac{8}{7}x+\frac{16}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{7}\right)^{2}}=\sqrt{\frac{76}{147}}
Take the square root of both sides of the equation.
x-\frac{4}{7}=\frac{2\sqrt{57}}{21} x-\frac{4}{7}=-\frac{2\sqrt{57}}{21}
Simplify.
x=\frac{2\sqrt{57}}{21}+\frac{4}{7} x=-\frac{2\sqrt{57}}{21}+\frac{4}{7}
Add \frac{4}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}