Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}
Rationalize the denominator of \frac{4}{5+\sqrt{3}} by multiplying numerator and denominator by 5-\sqrt{3}.
\frac{4\left(5-\sqrt{3}\right)}{5^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(5-\sqrt{3}\right)}{25-3}
Square 5. Square \sqrt{3}.
\frac{4\left(5-\sqrt{3}\right)}{22}
Subtract 3 from 25 to get 22.
\frac{2}{11}\left(5-\sqrt{3}\right)
Divide 4\left(5-\sqrt{3}\right) by 22 to get \frac{2}{11}\left(5-\sqrt{3}\right).
\frac{2}{11}\times 5+\frac{2}{11}\left(-1\right)\sqrt{3}
Use the distributive property to multiply \frac{2}{11} by 5-\sqrt{3}.
\frac{2\times 5}{11}+\frac{2}{11}\left(-1\right)\sqrt{3}
Express \frac{2}{11}\times 5 as a single fraction.
\frac{10}{11}+\frac{2}{11}\left(-1\right)\sqrt{3}
Multiply 2 and 5 to get 10.
\frac{10}{11}-\frac{2}{11}\sqrt{3}
Multiply \frac{2}{11} and -1 to get -\frac{2}{11}.