Evaluate
\frac{2\left(\sqrt{3}+\sqrt{5}\right)}{5}\approx 1.587247514
Share
Copied to clipboard
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{\left(5\sqrt{5}-5\sqrt{3}\right)\left(5\sqrt{5}+5\sqrt{3}\right)}
Rationalize the denominator of \frac{4}{5\sqrt{5}-5\sqrt{3}} by multiplying numerator and denominator by 5\sqrt{5}+5\sqrt{3}.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{\left(5\sqrt{5}\right)^{2}-\left(-5\sqrt{3}\right)^{2}}
Consider \left(5\sqrt{5}-5\sqrt{3}\right)\left(5\sqrt{5}+5\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{5^{2}\left(\sqrt{5}\right)^{2}-\left(-5\sqrt{3}\right)^{2}}
Expand \left(5\sqrt{5}\right)^{2}.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{25\left(\sqrt{5}\right)^{2}-\left(-5\sqrt{3}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{25\times 5-\left(-5\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{125-\left(-5\sqrt{3}\right)^{2}}
Multiply 25 and 5 to get 125.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{125-\left(-5\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-5\sqrt{3}\right)^{2}.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{125-25\left(\sqrt{3}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{125-25\times 3}
The square of \sqrt{3} is 3.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{125-75}
Multiply 25 and 3 to get 75.
\frac{4\left(5\sqrt{5}+5\sqrt{3}\right)}{50}
Subtract 75 from 125 to get 50.
\frac{2}{25}\left(5\sqrt{5}+5\sqrt{3}\right)
Divide 4\left(5\sqrt{5}+5\sqrt{3}\right) by 50 to get \frac{2}{25}\left(5\sqrt{5}+5\sqrt{3}\right).
\frac{2}{25}\times 5\sqrt{5}+\frac{2}{25}\times 5\sqrt{3}
Use the distributive property to multiply \frac{2}{25} by 5\sqrt{5}+5\sqrt{3}.
\frac{2\times 5}{25}\sqrt{5}+\frac{2}{25}\times 5\sqrt{3}
Express \frac{2}{25}\times 5 as a single fraction.
\frac{10}{25}\sqrt{5}+\frac{2}{25}\times 5\sqrt{3}
Multiply 2 and 5 to get 10.
\frac{2}{5}\sqrt{5}+\frac{2}{25}\times 5\sqrt{3}
Reduce the fraction \frac{10}{25} to lowest terms by extracting and canceling out 5.
\frac{2}{5}\sqrt{5}+\frac{2\times 5}{25}\sqrt{3}
Express \frac{2}{25}\times 5 as a single fraction.
\frac{2}{5}\sqrt{5}+\frac{10}{25}\sqrt{3}
Multiply 2 and 5 to get 10.
\frac{2}{5}\sqrt{5}+\frac{2}{5}\sqrt{3}
Reduce the fraction \frac{10}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}