Solve for x
x = -\frac{21}{4} = -5\frac{1}{4} = -5.25
Graph
Share
Copied to clipboard
\frac{4}{5}\left(\frac{1}{8}x+4^{-2}\right)-\frac{1}{5}\left(2x-\left(-2\right)^{-3}\right)=\frac{5^{-1}}{2^{-3}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{4}{5}\left(\frac{1}{8}x+\frac{1}{16}\right)-\frac{1}{5}\left(2x-\left(-2\right)^{-3}\right)=\frac{5^{-1}}{2^{-3}}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\frac{1}{10}x+\frac{1}{20}-\frac{1}{5}\left(2x-\left(-2\right)^{-3}\right)=\frac{5^{-1}}{2^{-3}}
Use the distributive property to multiply \frac{4}{5} by \frac{1}{8}x+\frac{1}{16}.
\frac{1}{10}x+\frac{1}{20}-\frac{1}{5}\left(2x-\left(-\frac{1}{8}\right)\right)=\frac{5^{-1}}{2^{-3}}
Calculate -2 to the power of -3 and get -\frac{1}{8}.
\frac{1}{10}x+\frac{1}{20}-\frac{1}{5}\left(2x+\frac{1}{8}\right)=\frac{5^{-1}}{2^{-3}}
The opposite of -\frac{1}{8} is \frac{1}{8}.
\frac{1}{10}x+\frac{1}{20}-\frac{2}{5}x-\frac{1}{40}=\frac{5^{-1}}{2^{-3}}
Use the distributive property to multiply -\frac{1}{5} by 2x+\frac{1}{8}.
-\frac{3}{10}x+\frac{1}{20}-\frac{1}{40}=\frac{5^{-1}}{2^{-3}}
Combine \frac{1}{10}x and -\frac{2}{5}x to get -\frac{3}{10}x.
-\frac{3}{10}x+\frac{1}{40}=\frac{5^{-1}}{2^{-3}}
Subtract \frac{1}{40} from \frac{1}{20} to get \frac{1}{40}.
-\frac{3}{10}x+\frac{1}{40}=\frac{\frac{1}{5}}{2^{-3}}
Calculate 5 to the power of -1 and get \frac{1}{5}.
-\frac{3}{10}x+\frac{1}{40}=\frac{\frac{1}{5}}{\frac{1}{8}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
-\frac{3}{10}x+\frac{1}{40}=\frac{1}{5}\times 8
Divide \frac{1}{5} by \frac{1}{8} by multiplying \frac{1}{5} by the reciprocal of \frac{1}{8}.
-\frac{3}{10}x+\frac{1}{40}=\frac{8}{5}
Multiply \frac{1}{5} and 8 to get \frac{8}{5}.
-\frac{3}{10}x=\frac{8}{5}-\frac{1}{40}
Subtract \frac{1}{40} from both sides.
-\frac{3}{10}x=\frac{63}{40}
Subtract \frac{1}{40} from \frac{8}{5} to get \frac{63}{40}.
x=\frac{63}{40}\left(-\frac{10}{3}\right)
Multiply both sides by -\frac{10}{3}, the reciprocal of -\frac{3}{10}.
x=-\frac{21}{4}
Multiply \frac{63}{40} and -\frac{10}{3} to get -\frac{21}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}