Evaluate
\frac{4756}{5741}\approx 0.828427103
Factor
\frac{2 ^ {2} \cdot 29 \cdot 41}{5741} = 0.8284271032921093
Share
Copied to clipboard
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+1}}}}}}}}}
Divide 4 by 4 to get 1.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{5}}}}}}}}}
Add 4 and 1 to get 5.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{20}{5}+\frac{4}{5}}}}}}}}}
Convert 4 to fraction \frac{20}{5}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{20+4}{5}}}}}}}}}
Since \frac{20}{5} and \frac{4}{5} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{24}{5}}}}}}}}}
Add 20 and 4 to get 24.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+4\times \frac{5}{24}}}}}}}}
Divide 4 by \frac{24}{5} by multiplying 4 by the reciprocal of \frac{24}{5}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4\times 5}{24}}}}}}}}
Express 4\times \frac{5}{24} as a single fraction.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{20}{24}}}}}}}}
Multiply 4 and 5 to get 20.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{5}{6}}}}}}}}
Reduce the fraction \frac{20}{24} to lowest terms by extracting and canceling out 4.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{24}{6}+\frac{5}{6}}}}}}}}
Convert 4 to fraction \frac{24}{6}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{24+5}{6}}}}}}}}
Since \frac{24}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{29}{6}}}}}}}}
Add 24 and 5 to get 29.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+4\times \frac{6}{29}}}}}}}
Divide 4 by \frac{29}{6} by multiplying 4 by the reciprocal of \frac{29}{6}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4\times 6}{29}}}}}}}
Express 4\times \frac{6}{29} as a single fraction.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{24}{29}}}}}}}
Multiply 4 and 6 to get 24.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{116}{29}+\frac{24}{29}}}}}}}
Convert 4 to fraction \frac{116}{29}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{116+24}{29}}}}}}}
Since \frac{116}{29} and \frac{24}{29} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{140}{29}}}}}}}
Add 116 and 24 to get 140.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+4\times \frac{29}{140}}}}}}
Divide 4 by \frac{140}{29} by multiplying 4 by the reciprocal of \frac{140}{29}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4\times 29}{140}}}}}}
Express 4\times \frac{29}{140} as a single fraction.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{116}{140}}}}}}
Multiply 4 and 29 to get 116.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{29}{35}}}}}}
Reduce the fraction \frac{116}{140} to lowest terms by extracting and canceling out 4.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{140}{35}+\frac{29}{35}}}}}}
Convert 4 to fraction \frac{140}{35}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{140+29}{35}}}}}}
Since \frac{140}{35} and \frac{29}{35} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{169}{35}}}}}}
Add 140 and 29 to get 169.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+4\times \frac{35}{169}}}}}
Divide 4 by \frac{169}{35} by multiplying 4 by the reciprocal of \frac{169}{35}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4\times 35}{169}}}}}
Express 4\times \frac{35}{169} as a single fraction.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{140}{169}}}}}
Multiply 4 and 35 to get 140.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{676}{169}+\frac{140}{169}}}}}
Convert 4 to fraction \frac{676}{169}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{676+140}{169}}}}}
Since \frac{676}{169} and \frac{140}{169} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4}{\frac{816}{169}}}}}
Add 676 and 140 to get 816.
\frac{4}{4+\frac{4}{4+\frac{4}{4+4\times \frac{169}{816}}}}
Divide 4 by \frac{816}{169} by multiplying 4 by the reciprocal of \frac{816}{169}.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{4\times 169}{816}}}}
Express 4\times \frac{169}{816} as a single fraction.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{676}{816}}}}
Multiply 4 and 169 to get 676.
\frac{4}{4+\frac{4}{4+\frac{4}{4+\frac{169}{204}}}}
Reduce the fraction \frac{676}{816} to lowest terms by extracting and canceling out 4.
\frac{4}{4+\frac{4}{4+\frac{4}{\frac{816}{204}+\frac{169}{204}}}}
Convert 4 to fraction \frac{816}{204}.
\frac{4}{4+\frac{4}{4+\frac{4}{\frac{816+169}{204}}}}
Since \frac{816}{204} and \frac{169}{204} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{4+\frac{4}{\frac{985}{204}}}}
Add 816 and 169 to get 985.
\frac{4}{4+\frac{4}{4+4\times \frac{204}{985}}}
Divide 4 by \frac{985}{204} by multiplying 4 by the reciprocal of \frac{985}{204}.
\frac{4}{4+\frac{4}{4+\frac{4\times 204}{985}}}
Express 4\times \frac{204}{985} as a single fraction.
\frac{4}{4+\frac{4}{4+\frac{816}{985}}}
Multiply 4 and 204 to get 816.
\frac{4}{4+\frac{4}{\frac{3940}{985}+\frac{816}{985}}}
Convert 4 to fraction \frac{3940}{985}.
\frac{4}{4+\frac{4}{\frac{3940+816}{985}}}
Since \frac{3940}{985} and \frac{816}{985} have the same denominator, add them by adding their numerators.
\frac{4}{4+\frac{4}{\frac{4756}{985}}}
Add 3940 and 816 to get 4756.
\frac{4}{4+4\times \frac{985}{4756}}
Divide 4 by \frac{4756}{985} by multiplying 4 by the reciprocal of \frac{4756}{985}.
\frac{4}{4+\frac{4\times 985}{4756}}
Express 4\times \frac{985}{4756} as a single fraction.
\frac{4}{4+\frac{3940}{4756}}
Multiply 4 and 985 to get 3940.
\frac{4}{4+\frac{985}{1189}}
Reduce the fraction \frac{3940}{4756} to lowest terms by extracting and canceling out 4.
\frac{4}{\frac{4756}{1189}+\frac{985}{1189}}
Convert 4 to fraction \frac{4756}{1189}.
\frac{4}{\frac{4756+985}{1189}}
Since \frac{4756}{1189} and \frac{985}{1189} have the same denominator, add them by adding their numerators.
\frac{4}{\frac{5741}{1189}}
Add 4756 and 985 to get 5741.
4\times \frac{1189}{5741}
Divide 4 by \frac{5741}{1189} by multiplying 4 by the reciprocal of \frac{5741}{1189}.
\frac{4\times 1189}{5741}
Express 4\times \frac{1189}{5741} as a single fraction.
\frac{4756}{5741}
Multiply 4 and 1189 to get 4756.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}