Evaluate (complex solution)
\frac{6}{5}-\frac{2}{5}i=1.2-0.4i
Real Part (complex solution)
\frac{6}{5} = 1\frac{1}{5} = 1.2
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{4}{3+i}
Calculate the square root of -1 and get i.
\frac{4\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-i.
\frac{4\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\left(-i\right)}{10}
Multiply 4 times 3-i.
\frac{12-4i}{10}
Do the multiplications in 4\times 3+4\left(-i\right).
\frac{6}{5}-\frac{2}{5}i
Divide 12-4i by 10 to get \frac{6}{5}-\frac{2}{5}i.
Re(\frac{4}{3+i})
Calculate the square root of -1 and get i.
Re(\frac{4\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{4}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{4\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\left(-i\right)}{10})
Multiply 4 times 3-i.
Re(\frac{12-4i}{10})
Do the multiplications in 4\times 3+4\left(-i\right).
Re(\frac{6}{5}-\frac{2}{5}i)
Divide 12-4i by 10 to get \frac{6}{5}-\frac{2}{5}i.
\frac{6}{5}
The real part of \frac{6}{5}-\frac{2}{5}i is \frac{6}{5}.
\frac{4\left(3-\sqrt{-1}\right)}{\left(3+\sqrt{-1}\right)\left(3-\sqrt{-1}\right)}
Rationalize the denominator of \frac{4}{3+\sqrt{-1}} by multiplying numerator and denominator by 3-\sqrt{-1}.
\frac{4\left(3-\sqrt{-1}\right)}{3^{2}-\left(\sqrt{-1}\right)^{2}}
Consider \left(3+\sqrt{-1}\right)\left(3-\sqrt{-1}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(3-\sqrt{-1}\right)}{9+1}
Square 3. Square \sqrt{-1}.
\frac{4\left(3-\sqrt{-1}\right)}{10}
Subtract -1 from 9 to get 10.
\frac{2}{5}\left(3-\sqrt{-1}\right)
Divide 4\left(3-\sqrt{-1}\right) by 10 to get \frac{2}{5}\left(3-\sqrt{-1}\right).
\frac{2}{5}\times 3+\frac{2}{5}\left(-1\right)\sqrt{-1}
Use the distributive property to multiply \frac{2}{5} by 3-\sqrt{-1}.
\frac{2\times 3}{5}+\frac{2}{5}\left(-1\right)\sqrt{-1}
Express \frac{2}{5}\times 3 as a single fraction.
\frac{6}{5}+\frac{2}{5}\left(-1\right)\sqrt{-1}
Multiply 2 and 3 to get 6.
\frac{6}{5}-\frac{2}{5}\sqrt{-1}
Multiply \frac{2}{5} and -1 to get -\frac{2}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}