Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{3}\times 3.14\times 3x^{2}\times 3\times 3x
Multiply x and x to get x^{2}.
\frac{4}{3}\times 3.14\times 3x^{3}\times 3\times 3
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{4}{3}\times \frac{157}{50}\times 3x^{3}\times 3\times 3
Convert decimal number 3.14 to fraction \frac{314}{100}. Reduce the fraction \frac{314}{100} to lowest terms by extracting and canceling out 2.
\frac{4\times 157}{3\times 50}\times 3x^{3}\times 3\times 3
Multiply \frac{4}{3} times \frac{157}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{628}{150}\times 3x^{3}\times 3\times 3
Do the multiplications in the fraction \frac{4\times 157}{3\times 50}.
\frac{314}{75}\times 3x^{3}\times 3\times 3
Reduce the fraction \frac{628}{150} to lowest terms by extracting and canceling out 2.
\frac{314\times 3}{75}x^{3}\times 3\times 3
Express \frac{314}{75}\times 3 as a single fraction.
\frac{942}{75}x^{3}\times 3\times 3
Multiply 314 and 3 to get 942.
\frac{314}{25}x^{3}\times 3\times 3
Reduce the fraction \frac{942}{75} to lowest terms by extracting and canceling out 3.
\frac{314\times 3}{25}x^{3}\times 3
Express \frac{314}{25}\times 3 as a single fraction.
\frac{942}{25}x^{3}\times 3
Multiply 314 and 3 to get 942.
\frac{942\times 3}{25}x^{3}
Express \frac{942}{25}\times 3 as a single fraction.
\frac{2826}{25}x^{3}
Multiply 942 and 3 to get 2826.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{3}\times 3.14\times 3x^{2}\times 3\times 3x)
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{3}\times 3.14\times 3x^{3}\times 3\times 3)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{3}\times \frac{157}{50}\times 3x^{3}\times 3\times 3)
Convert decimal number 3.14 to fraction \frac{314}{100}. Reduce the fraction \frac{314}{100} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 157}{3\times 50}\times 3x^{3}\times 3\times 3)
Multiply \frac{4}{3} times \frac{157}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{628}{150}\times 3x^{3}\times 3\times 3)
Do the multiplications in the fraction \frac{4\times 157}{3\times 50}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{314}{75}\times 3x^{3}\times 3\times 3)
Reduce the fraction \frac{628}{150} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{314\times 3}{75}x^{3}\times 3\times 3)
Express \frac{314}{75}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{942}{75}x^{3}\times 3\times 3)
Multiply 314 and 3 to get 942.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{314}{25}x^{3}\times 3\times 3)
Reduce the fraction \frac{942}{75} to lowest terms by extracting and canceling out 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{314\times 3}{25}x^{3}\times 3)
Express \frac{314}{25}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{942}{25}x^{3}\times 3)
Multiply 314 and 3 to get 942.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{942\times 3}{25}x^{3})
Express \frac{942}{25}\times 3 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2826}{25}x^{3})
Multiply 942 and 3 to get 2826.
3\times \frac{2826}{25}x^{3-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{8478}{25}x^{3-1}
Multiply 3 times \frac{2826}{25}.
\frac{8478}{25}x^{2}
Subtract 1 from 3.