Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-25=0
Multiply both sides by 25.
\left(2x-5\right)\left(2x+5\right)=0
Consider 4x^{2}-25. Rewrite 4x^{2}-25 as \left(2x\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{2} x=-\frac{5}{2}
To find equation solutions, solve 2x-5=0 and 2x+5=0.
\frac{4}{25}x^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}=1\times \frac{25}{4}
Multiply both sides by \frac{25}{4}, the reciprocal of \frac{4}{25}.
x^{2}=\frac{25}{4}
Multiply 1 and \frac{25}{4} to get \frac{25}{4}.
x=\frac{5}{2} x=-\frac{5}{2}
Take the square root of both sides of the equation.
\frac{4}{25}x^{2}-1=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{4}{25}\left(-1\right)}}{2\times \frac{4}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{25} for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{4}{25}\left(-1\right)}}{2\times \frac{4}{25}}
Square 0.
x=\frac{0±\sqrt{-\frac{16}{25}\left(-1\right)}}{2\times \frac{4}{25}}
Multiply -4 times \frac{4}{25}.
x=\frac{0±\sqrt{\frac{16}{25}}}{2\times \frac{4}{25}}
Multiply -\frac{16}{25} times -1.
x=\frac{0±\frac{4}{5}}{2\times \frac{4}{25}}
Take the square root of \frac{16}{25}.
x=\frac{0±\frac{4}{5}}{\frac{8}{25}}
Multiply 2 times \frac{4}{25}.
x=\frac{5}{2}
Now solve the equation x=\frac{0±\frac{4}{5}}{\frac{8}{25}} when ± is plus.
x=-\frac{5}{2}
Now solve the equation x=\frac{0±\frac{4}{5}}{\frac{8}{25}} when ± is minus.
x=\frac{5}{2} x=-\frac{5}{2}
The equation is now solved.