Verify
true
Share
Copied to clipboard
\frac{4}{1-\left(-\frac{1}{7}\right)}=\frac{3}{1+\frac{-1}{7}}
Fraction \frac{-1}{7} can be rewritten as -\frac{1}{7} by extracting the negative sign.
\frac{4}{1+\frac{1}{7}}=\frac{3}{1+\frac{-1}{7}}
The opposite of -\frac{1}{7} is \frac{1}{7}.
\frac{4}{\frac{7}{7}+\frac{1}{7}}=\frac{3}{1+\frac{-1}{7}}
Convert 1 to fraction \frac{7}{7}.
\frac{4}{\frac{7+1}{7}}=\frac{3}{1+\frac{-1}{7}}
Since \frac{7}{7} and \frac{1}{7} have the same denominator, add them by adding their numerators.
\frac{4}{\frac{8}{7}}=\frac{3}{1+\frac{-1}{7}}
Add 7 and 1 to get 8.
4\times \frac{7}{8}=\frac{3}{1+\frac{-1}{7}}
Divide 4 by \frac{8}{7} by multiplying 4 by the reciprocal of \frac{8}{7}.
\frac{4\times 7}{8}=\frac{3}{1+\frac{-1}{7}}
Express 4\times \frac{7}{8} as a single fraction.
\frac{28}{8}=\frac{3}{1+\frac{-1}{7}}
Multiply 4 and 7 to get 28.
\frac{7}{2}=\frac{3}{1+\frac{-1}{7}}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
\frac{7}{2}=\frac{3}{1-\frac{1}{7}}
Fraction \frac{-1}{7} can be rewritten as -\frac{1}{7} by extracting the negative sign.
\frac{7}{2}=\frac{3}{\frac{7}{7}-\frac{1}{7}}
Convert 1 to fraction \frac{7}{7}.
\frac{7}{2}=\frac{3}{\frac{7-1}{7}}
Since \frac{7}{7} and \frac{1}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{2}=\frac{3}{\frac{6}{7}}
Subtract 1 from 7 to get 6.
\frac{7}{2}=3\times \frac{7}{6}
Divide 3 by \frac{6}{7} by multiplying 3 by the reciprocal of \frac{6}{7}.
\frac{7}{2}=\frac{3\times 7}{6}
Express 3\times \frac{7}{6} as a single fraction.
\frac{7}{2}=\frac{21}{6}
Multiply 3 and 7 to get 21.
\frac{7}{2}=\frac{7}{2}
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
\text{true}
Compare \frac{7}{2} and \frac{7}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}