Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}
Rationalize the denominator of \frac{4}{1+\sqrt{5}} by multiplying numerator and denominator by 1-\sqrt{5}.
\frac{4\left(1-\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(1-\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
\frac{4\left(1-\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
-\left(1-\sqrt{5}\right)
Cancel out -4 and -4.
-1-\left(-\sqrt{5}\right)
To find the opposite of 1-\sqrt{5}, find the opposite of each term.
-1+\sqrt{5}
The opposite of -\sqrt{5} is \sqrt{5}.