Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{4}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\frac{4\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
\frac{4\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
-4\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
-4\sqrt{2}+4\sqrt{3}
Use the distributive property to multiply -4 by \sqrt{2}-\sqrt{3}.