Solve for x
x<\frac{66}{23}
Graph
Share
Copied to clipboard
8\left(3x-5\right)-\left(x-6\right)<32
Multiply both sides of the equation by 32, the least common multiple of 4,32. Since 32 is positive, the inequality direction remains the same.
24x-40-\left(x-6\right)<32
Use the distributive property to multiply 8 by 3x-5.
24x-40-x-\left(-6\right)<32
To find the opposite of x-6, find the opposite of each term.
24x-40-x+6<32
The opposite of -6 is 6.
23x-40+6<32
Combine 24x and -x to get 23x.
23x-34<32
Add -40 and 6 to get -34.
23x<32+34
Add 34 to both sides.
23x<66
Add 32 and 34 to get 66.
x<\frac{66}{23}
Divide both sides by 23. Since 23 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}