Solve for x
x\leq 3
Graph
Share
Copied to clipboard
8\left(3x-4\right)+5\leq 5\left(6x+7\right)-40x+40
Multiply both sides of the equation by 40, the least common multiple of 5,8. Since 40 is positive, the inequality direction remains the same.
24x-32+5\leq 5\left(6x+7\right)-40x+40
Use the distributive property to multiply 8 by 3x-4.
24x-27\leq 5\left(6x+7\right)-40x+40
Add -32 and 5 to get -27.
24x-27\leq 30x+35-40x+40
Use the distributive property to multiply 5 by 6x+7.
24x-27\leq -10x+35+40
Combine 30x and -40x to get -10x.
24x-27\leq -10x+75
Add 35 and 40 to get 75.
24x-27+10x\leq 75
Add 10x to both sides.
34x-27\leq 75
Combine 24x and 10x to get 34x.
34x\leq 75+27
Add 27 to both sides.
34x\leq 102
Add 75 and 27 to get 102.
x\leq \frac{102}{34}
Divide both sides by 34. Since 34 is positive, the inequality direction remains the same.
x\leq 3
Divide 102 by 34 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}