Solve for x
x=-9
Graph
Share
Copied to clipboard
\left(x-2\right)\times 3x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,2-x,x^{2}-4.
\left(3x-6\right)x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply x-2 by 3.
3x^{2}-6x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply 3x-6 by x.
3x^{2}-6x+\left(-2-x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply -1 by 2+x.
3x^{2}-6x-5x-2-2x^{2}=2x^{2}+16
Use the distributive property to multiply -2-x by 2x+1 and combine like terms.
3x^{2}-11x-2-2x^{2}=2x^{2}+16
Combine -6x and -5x to get -11x.
x^{2}-11x-2=2x^{2}+16
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-11x-2-2x^{2}=16
Subtract 2x^{2} from both sides.
-x^{2}-11x-2=16
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-11x-2-16=0
Subtract 16 from both sides.
-x^{2}-11x-18=0
Subtract 16 from -2 to get -18.
a+b=-11 ab=-\left(-18\right)=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-18. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-2 b=-9
The solution is the pair that gives sum -11.
\left(-x^{2}-2x\right)+\left(-9x-18\right)
Rewrite -x^{2}-11x-18 as \left(-x^{2}-2x\right)+\left(-9x-18\right).
x\left(-x-2\right)+9\left(-x-2\right)
Factor out x in the first and 9 in the second group.
\left(-x-2\right)\left(x+9\right)
Factor out common term -x-2 by using distributive property.
x=-2 x=-9
To find equation solutions, solve -x-2=0 and x+9=0.
x=-9
Variable x cannot be equal to -2.
\left(x-2\right)\times 3x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,2-x,x^{2}-4.
\left(3x-6\right)x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply x-2 by 3.
3x^{2}-6x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply 3x-6 by x.
3x^{2}-6x+\left(-2-x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply -1 by 2+x.
3x^{2}-6x-5x-2-2x^{2}=2x^{2}+16
Use the distributive property to multiply -2-x by 2x+1 and combine like terms.
3x^{2}-11x-2-2x^{2}=2x^{2}+16
Combine -6x and -5x to get -11x.
x^{2}-11x-2=2x^{2}+16
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-11x-2-2x^{2}=16
Subtract 2x^{2} from both sides.
-x^{2}-11x-2=16
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-11x-2-16=0
Subtract 16 from both sides.
-x^{2}-11x-18=0
Subtract 16 from -2 to get -18.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -11 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+4\left(-18\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-11\right)±\sqrt{121-72}}{2\left(-1\right)}
Multiply 4 times -18.
x=\frac{-\left(-11\right)±\sqrt{49}}{2\left(-1\right)}
Add 121 to -72.
x=\frac{-\left(-11\right)±7}{2\left(-1\right)}
Take the square root of 49.
x=\frac{11±7}{2\left(-1\right)}
The opposite of -11 is 11.
x=\frac{11±7}{-2}
Multiply 2 times -1.
x=\frac{18}{-2}
Now solve the equation x=\frac{11±7}{-2} when ± is plus. Add 11 to 7.
x=-9
Divide 18 by -2.
x=\frac{4}{-2}
Now solve the equation x=\frac{11±7}{-2} when ± is minus. Subtract 7 from 11.
x=-2
Divide 4 by -2.
x=-9 x=-2
The equation is now solved.
x=-9
Variable x cannot be equal to -2.
\left(x-2\right)\times 3x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x+2,2-x,x^{2}-4.
\left(3x-6\right)x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply x-2 by 3.
3x^{2}-6x-\left(2+x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply 3x-6 by x.
3x^{2}-6x+\left(-2-x\right)\left(2x+1\right)=2x^{2}+16
Use the distributive property to multiply -1 by 2+x.
3x^{2}-6x-5x-2-2x^{2}=2x^{2}+16
Use the distributive property to multiply -2-x by 2x+1 and combine like terms.
3x^{2}-11x-2-2x^{2}=2x^{2}+16
Combine -6x and -5x to get -11x.
x^{2}-11x-2=2x^{2}+16
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-11x-2-2x^{2}=16
Subtract 2x^{2} from both sides.
-x^{2}-11x-2=16
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-11x=16+2
Add 2 to both sides.
-x^{2}-11x=18
Add 16 and 2 to get 18.
\frac{-x^{2}-11x}{-1}=\frac{18}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{11}{-1}\right)x=\frac{18}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+11x=\frac{18}{-1}
Divide -11 by -1.
x^{2}+11x=-18
Divide 18 by -1.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-18+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-18+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{49}{4}
Add -18 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{7}{2} x+\frac{11}{2}=-\frac{7}{2}
Simplify.
x=-2 x=-9
Subtract \frac{11}{2} from both sides of the equation.
x=-9
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}