Solve for x
x=\frac{9}{17}\approx 0.529411765
Graph
Share
Copied to clipboard
6x-\frac{1.4-x}{0.4}=1
Divide 3x by 0.5 to get 6x.
6x-\left(\frac{1.4}{0.4}+\frac{-x}{0.4}\right)=1
Divide each term of 1.4-x by 0.4 to get \frac{1.4}{0.4}+\frac{-x}{0.4}.
6x-\left(\frac{14}{4}+\frac{-x}{0.4}\right)=1
Expand \frac{1.4}{0.4} by multiplying both numerator and the denominator by 10.
6x-\left(\frac{7}{2}+\frac{-x}{0.4}\right)=1
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
6x-\left(\frac{7}{2}-2.5x\right)=1
Divide -x by 0.4 to get -2.5x.
6x-\frac{7}{2}-\left(-2.5x\right)=1
To find the opposite of \frac{7}{2}-2.5x, find the opposite of each term.
6x-\frac{7}{2}+2.5x=1
The opposite of -2.5x is 2.5x.
8.5x-\frac{7}{2}=1
Combine 6x and 2.5x to get 8.5x.
8.5x=1+\frac{7}{2}
Add \frac{7}{2} to both sides.
8.5x=\frac{2}{2}+\frac{7}{2}
Convert 1 to fraction \frac{2}{2}.
8.5x=\frac{2+7}{2}
Since \frac{2}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
8.5x=\frac{9}{2}
Add 2 and 7 to get 9.
x=\frac{\frac{9}{2}}{8.5}
Divide both sides by 8.5.
x=\frac{9}{2\times 8.5}
Express \frac{\frac{9}{2}}{8.5} as a single fraction.
x=\frac{9}{17}
Multiply 2 and 8.5 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}