Solve for m
m=\frac{1-\sqrt{2}}{3}\approx -0.138071187
m=\frac{\sqrt{2}+1}{3}\approx 0.804737854
Share
Copied to clipboard
\left(3m+1\right)\left(3m+1\right)-\left(3m-1\right)\left(3m-1\right)=2\left(3m-1\right)\left(3m+1\right)
Variable m cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3m-1\right)\left(3m+1\right), the least common multiple of 3m-1,3m+1.
\left(3m+1\right)^{2}-\left(3m-1\right)\left(3m-1\right)=2\left(3m-1\right)\left(3m+1\right)
Multiply 3m+1 and 3m+1 to get \left(3m+1\right)^{2}.
\left(3m+1\right)^{2}-\left(3m-1\right)^{2}=2\left(3m-1\right)\left(3m+1\right)
Multiply 3m-1 and 3m-1 to get \left(3m-1\right)^{2}.
9m^{2}+6m+1-\left(3m-1\right)^{2}=2\left(3m-1\right)\left(3m+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3m+1\right)^{2}.
9m^{2}+6m+1-\left(9m^{2}-6m+1\right)=2\left(3m-1\right)\left(3m+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3m-1\right)^{2}.
9m^{2}+6m+1-9m^{2}+6m-1=2\left(3m-1\right)\left(3m+1\right)
To find the opposite of 9m^{2}-6m+1, find the opposite of each term.
6m+1+6m-1=2\left(3m-1\right)\left(3m+1\right)
Combine 9m^{2} and -9m^{2} to get 0.
12m+1-1=2\left(3m-1\right)\left(3m+1\right)
Combine 6m and 6m to get 12m.
12m=2\left(3m-1\right)\left(3m+1\right)
Subtract 1 from 1 to get 0.
12m=\left(6m-2\right)\left(3m+1\right)
Use the distributive property to multiply 2 by 3m-1.
12m=18m^{2}-2
Use the distributive property to multiply 6m-2 by 3m+1 and combine like terms.
12m-18m^{2}=-2
Subtract 18m^{2} from both sides.
12m-18m^{2}+2=0
Add 2 to both sides.
-18m^{2}+12m+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-12±\sqrt{12^{2}-4\left(-18\right)\times 2}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 12 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-12±\sqrt{144-4\left(-18\right)\times 2}}{2\left(-18\right)}
Square 12.
m=\frac{-12±\sqrt{144+72\times 2}}{2\left(-18\right)}
Multiply -4 times -18.
m=\frac{-12±\sqrt{144+144}}{2\left(-18\right)}
Multiply 72 times 2.
m=\frac{-12±\sqrt{288}}{2\left(-18\right)}
Add 144 to 144.
m=\frac{-12±12\sqrt{2}}{2\left(-18\right)}
Take the square root of 288.
m=\frac{-12±12\sqrt{2}}{-36}
Multiply 2 times -18.
m=\frac{12\sqrt{2}-12}{-36}
Now solve the equation m=\frac{-12±12\sqrt{2}}{-36} when ± is plus. Add -12 to 12\sqrt{2}.
m=\frac{1-\sqrt{2}}{3}
Divide -12+12\sqrt{2} by -36.
m=\frac{-12\sqrt{2}-12}{-36}
Now solve the equation m=\frac{-12±12\sqrt{2}}{-36} when ± is minus. Subtract 12\sqrt{2} from -12.
m=\frac{\sqrt{2}+1}{3}
Divide -12-12\sqrt{2} by -36.
m=\frac{1-\sqrt{2}}{3} m=\frac{\sqrt{2}+1}{3}
The equation is now solved.
\left(3m+1\right)\left(3m+1\right)-\left(3m-1\right)\left(3m-1\right)=2\left(3m-1\right)\left(3m+1\right)
Variable m cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3m-1\right)\left(3m+1\right), the least common multiple of 3m-1,3m+1.
\left(3m+1\right)^{2}-\left(3m-1\right)\left(3m-1\right)=2\left(3m-1\right)\left(3m+1\right)
Multiply 3m+1 and 3m+1 to get \left(3m+1\right)^{2}.
\left(3m+1\right)^{2}-\left(3m-1\right)^{2}=2\left(3m-1\right)\left(3m+1\right)
Multiply 3m-1 and 3m-1 to get \left(3m-1\right)^{2}.
9m^{2}+6m+1-\left(3m-1\right)^{2}=2\left(3m-1\right)\left(3m+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3m+1\right)^{2}.
9m^{2}+6m+1-\left(9m^{2}-6m+1\right)=2\left(3m-1\right)\left(3m+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3m-1\right)^{2}.
9m^{2}+6m+1-9m^{2}+6m-1=2\left(3m-1\right)\left(3m+1\right)
To find the opposite of 9m^{2}-6m+1, find the opposite of each term.
6m+1+6m-1=2\left(3m-1\right)\left(3m+1\right)
Combine 9m^{2} and -9m^{2} to get 0.
12m+1-1=2\left(3m-1\right)\left(3m+1\right)
Combine 6m and 6m to get 12m.
12m=2\left(3m-1\right)\left(3m+1\right)
Subtract 1 from 1 to get 0.
12m=\left(6m-2\right)\left(3m+1\right)
Use the distributive property to multiply 2 by 3m-1.
12m=18m^{2}-2
Use the distributive property to multiply 6m-2 by 3m+1 and combine like terms.
12m-18m^{2}=-2
Subtract 18m^{2} from both sides.
-18m^{2}+12m=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-18m^{2}+12m}{-18}=-\frac{2}{-18}
Divide both sides by -18.
m^{2}+\frac{12}{-18}m=-\frac{2}{-18}
Dividing by -18 undoes the multiplication by -18.
m^{2}-\frac{2}{3}m=-\frac{2}{-18}
Reduce the fraction \frac{12}{-18} to lowest terms by extracting and canceling out 6.
m^{2}-\frac{2}{3}m=\frac{1}{9}
Reduce the fraction \frac{-2}{-18} to lowest terms by extracting and canceling out 2.
m^{2}-\frac{2}{3}m+\left(-\frac{1}{3}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{2}{3}m+\frac{1}{9}=\frac{1+1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{2}{3}m+\frac{1}{9}=\frac{2}{9}
Add \frac{1}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{1}{3}\right)^{2}=\frac{2}{9}
Factor m^{2}-\frac{2}{3}m+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{3}\right)^{2}}=\sqrt{\frac{2}{9}}
Take the square root of both sides of the equation.
m-\frac{1}{3}=\frac{\sqrt{2}}{3} m-\frac{1}{3}=-\frac{\sqrt{2}}{3}
Simplify.
m=\frac{\sqrt{2}+1}{3} m=\frac{1-\sqrt{2}}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}