Solve for x
x = \frac{\sqrt{3649} + 43}{30} \approx 3.446898441
x=\frac{43-\sqrt{3649}}{30}\approx -0.580231775
Graph
Share
Copied to clipboard
360+x\times 156=\left(x-2\right)\times 180x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
360+x\times 156=\left(180x-360\right)x
Use the distributive property to multiply x-2 by 180.
360+x\times 156=180x^{2}-360x
Use the distributive property to multiply 180x-360 by x.
360+x\times 156-180x^{2}=-360x
Subtract 180x^{2} from both sides.
360+x\times 156-180x^{2}+360x=0
Add 360x to both sides.
360+516x-180x^{2}=0
Combine x\times 156 and 360x to get 516x.
-180x^{2}+516x+360=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-516±\sqrt{516^{2}-4\left(-180\right)\times 360}}{2\left(-180\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -180 for a, 516 for b, and 360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-516±\sqrt{266256-4\left(-180\right)\times 360}}{2\left(-180\right)}
Square 516.
x=\frac{-516±\sqrt{266256+720\times 360}}{2\left(-180\right)}
Multiply -4 times -180.
x=\frac{-516±\sqrt{266256+259200}}{2\left(-180\right)}
Multiply 720 times 360.
x=\frac{-516±\sqrt{525456}}{2\left(-180\right)}
Add 266256 to 259200.
x=\frac{-516±12\sqrt{3649}}{2\left(-180\right)}
Take the square root of 525456.
x=\frac{-516±12\sqrt{3649}}{-360}
Multiply 2 times -180.
x=\frac{12\sqrt{3649}-516}{-360}
Now solve the equation x=\frac{-516±12\sqrt{3649}}{-360} when ± is plus. Add -516 to 12\sqrt{3649}.
x=\frac{43-\sqrt{3649}}{30}
Divide -516+12\sqrt{3649} by -360.
x=\frac{-12\sqrt{3649}-516}{-360}
Now solve the equation x=\frac{-516±12\sqrt{3649}}{-360} when ± is minus. Subtract 12\sqrt{3649} from -516.
x=\frac{\sqrt{3649}+43}{30}
Divide -516-12\sqrt{3649} by -360.
x=\frac{43-\sqrt{3649}}{30} x=\frac{\sqrt{3649}+43}{30}
The equation is now solved.
360+x\times 156=\left(x-2\right)\times 180x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
360+x\times 156=\left(180x-360\right)x
Use the distributive property to multiply x-2 by 180.
360+x\times 156=180x^{2}-360x
Use the distributive property to multiply 180x-360 by x.
360+x\times 156-180x^{2}=-360x
Subtract 180x^{2} from both sides.
360+x\times 156-180x^{2}+360x=0
Add 360x to both sides.
360+516x-180x^{2}=0
Combine x\times 156 and 360x to get 516x.
516x-180x^{2}=-360
Subtract 360 from both sides. Anything subtracted from zero gives its negation.
-180x^{2}+516x=-360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-180x^{2}+516x}{-180}=-\frac{360}{-180}
Divide both sides by -180.
x^{2}+\frac{516}{-180}x=-\frac{360}{-180}
Dividing by -180 undoes the multiplication by -180.
x^{2}-\frac{43}{15}x=-\frac{360}{-180}
Reduce the fraction \frac{516}{-180} to lowest terms by extracting and canceling out 12.
x^{2}-\frac{43}{15}x=2
Divide -360 by -180.
x^{2}-\frac{43}{15}x+\left(-\frac{43}{30}\right)^{2}=2+\left(-\frac{43}{30}\right)^{2}
Divide -\frac{43}{15}, the coefficient of the x term, by 2 to get -\frac{43}{30}. Then add the square of -\frac{43}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{43}{15}x+\frac{1849}{900}=2+\frac{1849}{900}
Square -\frac{43}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{43}{15}x+\frac{1849}{900}=\frac{3649}{900}
Add 2 to \frac{1849}{900}.
\left(x-\frac{43}{30}\right)^{2}=\frac{3649}{900}
Factor x^{2}-\frac{43}{15}x+\frac{1849}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{43}{30}\right)^{2}}=\sqrt{\frac{3649}{900}}
Take the square root of both sides of the equation.
x-\frac{43}{30}=\frac{\sqrt{3649}}{30} x-\frac{43}{30}=-\frac{\sqrt{3649}}{30}
Simplify.
x=\frac{\sqrt{3649}+43}{30} x=\frac{43-\sqrt{3649}}{30}
Add \frac{43}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}