Evaluate
\frac{80}{7}\approx 11.428571429
Factor
\frac{2 ^ {4} \cdot 5}{7} = 11\frac{3}{7} = 11.428571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{2800)}\phantom{1}\\2800\overline{)32000}\\\end{array}
Use the 1^{st} digit 3 from dividend 32000
\begin{array}{l}\phantom{2800)}0\phantom{2}\\2800\overline{)32000}\\\end{array}
Since 3 is less than 2800, use the next digit 2 from dividend 32000 and add 0 to the quotient
\begin{array}{l}\phantom{2800)}0\phantom{3}\\2800\overline{)32000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 32000
\begin{array}{l}\phantom{2800)}00\phantom{4}\\2800\overline{)32000}\\\end{array}
Since 32 is less than 2800, use the next digit 0 from dividend 32000 and add 0 to the quotient
\begin{array}{l}\phantom{2800)}00\phantom{5}\\2800\overline{)32000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 32000
\begin{array}{l}\phantom{2800)}000\phantom{6}\\2800\overline{)32000}\\\end{array}
Since 320 is less than 2800, use the next digit 0 from dividend 32000 and add 0 to the quotient
\begin{array}{l}\phantom{2800)}000\phantom{7}\\2800\overline{)32000}\\\end{array}
Use the 4^{th} digit 0 from dividend 32000
\begin{array}{l}\phantom{2800)}0001\phantom{8}\\2800\overline{)32000}\\\phantom{2800)}\underline{\phantom{}2800\phantom{9}}\\\phantom{2800)9}400\\\end{array}
Find closest multiple of 2800 to 3200. We see that 1 \times 2800 = 2800 is the nearest. Now subtract 2800 from 3200 to get reminder 400. Add 1 to quotient.
\begin{array}{l}\phantom{2800)}0001\phantom{9}\\2800\overline{)32000}\\\phantom{2800)}\underline{\phantom{}2800\phantom{9}}\\\phantom{2800)9}4000\\\end{array}
Use the 5^{th} digit 0 from dividend 32000
\begin{array}{l}\phantom{2800)}00011\phantom{10}\\2800\overline{)32000}\\\phantom{2800)}\underline{\phantom{}2800\phantom{9}}\\\phantom{2800)9}4000\\\phantom{2800)}\underline{\phantom{9}2800\phantom{}}\\\phantom{2800)9}1200\\\end{array}
Find closest multiple of 2800 to 4000. We see that 1 \times 2800 = 2800 is the nearest. Now subtract 2800 from 4000 to get reminder 1200. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }1200
Since 1200 is less than 2800, stop the division. The reminder is 1200. The topmost line 00011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}