Evaluate
\frac{13}{6}\approx 2.166666667
Factor
\frac{13}{2 \cdot 3} = 2\frac{1}{6} = 2.1666666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{1440)}\phantom{1}\\1440\overline{)3120}\\\end{array}
Use the 1^{st} digit 3 from dividend 3120
\begin{array}{l}\phantom{1440)}0\phantom{2}\\1440\overline{)3120}\\\end{array}
Since 3 is less than 1440, use the next digit 1 from dividend 3120 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}0\phantom{3}\\1440\overline{)3120}\\\end{array}
Use the 2^{nd} digit 1 from dividend 3120
\begin{array}{l}\phantom{1440)}00\phantom{4}\\1440\overline{)3120}\\\end{array}
Since 31 is less than 1440, use the next digit 2 from dividend 3120 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}00\phantom{5}\\1440\overline{)3120}\\\end{array}
Use the 3^{rd} digit 2 from dividend 3120
\begin{array}{l}\phantom{1440)}000\phantom{6}\\1440\overline{)3120}\\\end{array}
Since 312 is less than 1440, use the next digit 0 from dividend 3120 and add 0 to the quotient
\begin{array}{l}\phantom{1440)}000\phantom{7}\\1440\overline{)3120}\\\end{array}
Use the 4^{th} digit 0 from dividend 3120
\begin{array}{l}\phantom{1440)}0002\phantom{8}\\1440\overline{)3120}\\\phantom{1440)}\underline{\phantom{}2880\phantom{}}\\\phantom{1440)9}240\\\end{array}
Find closest multiple of 1440 to 3120. We see that 2 \times 1440 = 2880 is the nearest. Now subtract 2880 from 3120 to get reminder 240. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }240
Since 240 is less than 1440, stop the division. The reminder is 240. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}