Evaluate
\frac{50000}{3}\approx 16666.666666667
Factor
\frac{2 ^ {4} \cdot 5 ^ {5}}{3} = 16666\frac{2}{3} = 16666.666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)300000}\\\end{array}
Use the 1^{st} digit 3 from dividend 300000
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)300000}\\\end{array}
Since 3 is less than 18, use the next digit 0 from dividend 300000 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)300000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300000
\begin{array}{l}\phantom{18)}01\phantom{4}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}12\\\end{array}
Find closest multiple of 18 to 30. We see that 1 \times 18 = 18 is the nearest. Now subtract 18 from 30 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{18)}01\phantom{5}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 300000
\begin{array}{l}\phantom{18)}016\phantom{6}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}12\\\end{array}
Find closest multiple of 18 to 120. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 120 to get reminder 12. Add 6 to quotient.
\begin{array}{l}\phantom{18)}016\phantom{7}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}120\\\end{array}
Use the 4^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{18)}0166\phantom{8}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}120\\\phantom{18)}\underline{\phantom{9}108\phantom{99}}\\\phantom{18)99}12\\\end{array}
Find closest multiple of 18 to 120. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 120 to get reminder 12. Add 6 to quotient.
\begin{array}{l}\phantom{18)}0166\phantom{9}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}120\\\phantom{18)}\underline{\phantom{9}108\phantom{99}}\\\phantom{18)99}120\\\end{array}
Use the 5^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{18)}01666\phantom{10}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}120\\\phantom{18)}\underline{\phantom{9}108\phantom{99}}\\\phantom{18)99}120\\\phantom{18)}\underline{\phantom{99}108\phantom{9}}\\\phantom{18)999}12\\\end{array}
Find closest multiple of 18 to 120. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 120 to get reminder 12. Add 6 to quotient.
\begin{array}{l}\phantom{18)}01666\phantom{11}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}120\\\phantom{18)}\underline{\phantom{9}108\phantom{99}}\\\phantom{18)99}120\\\phantom{18)}\underline{\phantom{99}108\phantom{9}}\\\phantom{18)999}120\\\end{array}
Use the 6^{th} digit 0 from dividend 300000
\begin{array}{l}\phantom{18)}016666\phantom{12}\\18\overline{)300000}\\\phantom{18)}\underline{\phantom{}18\phantom{9999}}\\\phantom{18)}120\\\phantom{18)}\underline{\phantom{}108\phantom{999}}\\\phantom{18)9}120\\\phantom{18)}\underline{\phantom{9}108\phantom{99}}\\\phantom{18)99}120\\\phantom{18)}\underline{\phantom{99}108\phantom{9}}\\\phantom{18)999}120\\\phantom{18)}\underline{\phantom{999}108\phantom{}}\\\phantom{18)9999}12\\\end{array}
Find closest multiple of 18 to 120. We see that 6 \times 18 = 108 is the nearest. Now subtract 108 from 120 to get reminder 12. Add 6 to quotient.
\text{Quotient: }16666 \text{Reminder: }12
Since 12 is less than 18, stop the division. The reminder is 12. The topmost line 016666 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16666.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}