Solve for x (complex solution)
x=\frac{-5\sqrt{47}i+5}{2}\approx 2.5-17.139136501i
x=\frac{5+5\sqrt{47}i}{2}\approx 2.5+17.139136501i
Graph
Share
Copied to clipboard
\left(x-5\right)\times 300-x\times 300=5x\left(x-5\right)
Variable x cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by x\left(x-5\right), the least common multiple of x,x-5.
300x-1500-x\times 300=5x\left(x-5\right)
Use the distributive property to multiply x-5 by 300.
300x-1500-x\times 300=5x^{2}-25x
Use the distributive property to multiply 5x by x-5.
300x-1500-x\times 300-5x^{2}=-25x
Subtract 5x^{2} from both sides.
300x-1500-x\times 300-5x^{2}+25x=0
Add 25x to both sides.
325x-1500-x\times 300-5x^{2}=0
Combine 300x and 25x to get 325x.
325x-1500-300x-5x^{2}=0
Multiply -1 and 300 to get -300.
25x-1500-5x^{2}=0
Combine 325x and -300x to get 25x.
-5x^{2}+25x-1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-5\right)\left(-1500\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 25 for b, and -1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-5\right)\left(-1500\right)}}{2\left(-5\right)}
Square 25.
x=\frac{-25±\sqrt{625+20\left(-1500\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-25±\sqrt{625-30000}}{2\left(-5\right)}
Multiply 20 times -1500.
x=\frac{-25±\sqrt{-29375}}{2\left(-5\right)}
Add 625 to -30000.
x=\frac{-25±25\sqrt{47}i}{2\left(-5\right)}
Take the square root of -29375.
x=\frac{-25±25\sqrt{47}i}{-10}
Multiply 2 times -5.
x=\frac{-25+25\sqrt{47}i}{-10}
Now solve the equation x=\frac{-25±25\sqrt{47}i}{-10} when ± is plus. Add -25 to 25i\sqrt{47}.
x=\frac{-5\sqrt{47}i+5}{2}
Divide -25+25i\sqrt{47} by -10.
x=\frac{-25\sqrt{47}i-25}{-10}
Now solve the equation x=\frac{-25±25\sqrt{47}i}{-10} when ± is minus. Subtract 25i\sqrt{47} from -25.
x=\frac{5+5\sqrt{47}i}{2}
Divide -25-25i\sqrt{47} by -10.
x=\frac{-5\sqrt{47}i+5}{2} x=\frac{5+5\sqrt{47}i}{2}
The equation is now solved.
\left(x-5\right)\times 300-x\times 300=5x\left(x-5\right)
Variable x cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by x\left(x-5\right), the least common multiple of x,x-5.
300x-1500-x\times 300=5x\left(x-5\right)
Use the distributive property to multiply x-5 by 300.
300x-1500-x\times 300=5x^{2}-25x
Use the distributive property to multiply 5x by x-5.
300x-1500-x\times 300-5x^{2}=-25x
Subtract 5x^{2} from both sides.
300x-1500-x\times 300-5x^{2}+25x=0
Add 25x to both sides.
325x-1500-x\times 300-5x^{2}=0
Combine 300x and 25x to get 325x.
325x-x\times 300-5x^{2}=1500
Add 1500 to both sides. Anything plus zero gives itself.
325x-300x-5x^{2}=1500
Multiply -1 and 300 to get -300.
25x-5x^{2}=1500
Combine 325x and -300x to get 25x.
-5x^{2}+25x=1500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+25x}{-5}=\frac{1500}{-5}
Divide both sides by -5.
x^{2}+\frac{25}{-5}x=\frac{1500}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-5x=\frac{1500}{-5}
Divide 25 by -5.
x^{2}-5x=-300
Divide 1500 by -5.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-300+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-300+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{1175}{4}
Add -300 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{1175}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{1175}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{5\sqrt{47}i}{2} x-\frac{5}{2}=-\frac{5\sqrt{47}i}{2}
Simplify.
x=\frac{5+5\sqrt{47}i}{2} x=\frac{-5\sqrt{47}i+5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}