Solve for x
x=-\frac{y+2}{3\left(1-y\right)}
y\neq 1\text{ and }y\neq 0
Solve for y
y=-\frac{3x+2}{1-3x}
x\neq -\frac{2}{3}\text{ and }x\neq \frac{1}{3}
Graph
Share
Copied to clipboard
3\left(x+y\right)+2=3xy+y\times 2
Multiply both sides of the equation by y.
3x+3y+2=3xy+y\times 2
Use the distributive property to multiply 3 by x+y.
3x+3y+2-3xy=y\times 2
Subtract 3xy from both sides.
3x+2-3xy=y\times 2-3y
Subtract 3y from both sides.
3x+2-3xy=-y
Combine y\times 2 and -3y to get -y.
3x-3xy=-y-2
Subtract 2 from both sides.
\left(3-3y\right)x=-y-2
Combine all terms containing x.
\frac{\left(3-3y\right)x}{3-3y}=\frac{-y-2}{3-3y}
Divide both sides by -3y+3.
x=\frac{-y-2}{3-3y}
Dividing by -3y+3 undoes the multiplication by -3y+3.
x=-\frac{y+2}{3\left(1-y\right)}
Divide -y-2 by -3y+3.
3\left(x+y\right)+2=3xy+y\times 2
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
3x+3y+2=3xy+y\times 2
Use the distributive property to multiply 3 by x+y.
3x+3y+2-3xy=y\times 2
Subtract 3xy from both sides.
3x+3y+2-3xy-y\times 2=0
Subtract y\times 2 from both sides.
3x+y+2-3xy=0
Combine 3y and -y\times 2 to get y.
y+2-3xy=-3x
Subtract 3x from both sides. Anything subtracted from zero gives its negation.
y-3xy=-3x-2
Subtract 2 from both sides.
\left(1-3x\right)y=-3x-2
Combine all terms containing y.
\frac{\left(1-3x\right)y}{1-3x}=\frac{-3x-2}{1-3x}
Divide both sides by 1-3x.
y=\frac{-3x-2}{1-3x}
Dividing by 1-3x undoes the multiplication by 1-3x.
y=-\frac{3x+2}{1-3x}
Divide -3x-2 by 1-3x.
y=-\frac{3x+2}{1-3x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}